欢迎来到天天文库
浏览记录
ID:21949344
大小:131.32 KB
页数:5页
时间:2018-10-25
《2018高考题圆锥曲线》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、(2018全国二卷)19.(12分)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程(2)求过点,且与的准线相切的圆的方程.(2018全国三卷)20.(12分)已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.(2018北京卷)(19)(本小题14分)已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直
2、线l的斜率的取值范围;(2018天津卷)(19)(本小题满分14分)设椭圆(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若(O为原点),求k的值.(2018江苏卷)18.(本小题满分16分)如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与
3、椭圆C交于两点.若的面积为,求直线l的方程.(2018浙江卷)21.(本题满分15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.(2018上海卷)20.(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数t>2,在平面直角坐标系xOy中,已知点F(2,0),直线l:x=
4、t,曲线:,l与x轴交于点A,与交于点B,P、Q分别是曲线与线段AB上的动点。(1)用t为表示点B到点F的距离;(2)设t=3,,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在上?若存在,求点P的坐标;若不存在,说明理由。
此文档下载收益归作者所有