欢迎来到天天文库
浏览记录
ID:21945956
大小:1.65 MB
页数:40页
时间:2018-10-25
《华工大线性代数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课程教案学院、部应用数学学院系、所授课教师课程名称线性代数课程学时32学时实验学时教材名称工程数学——线性代数年月日第40页,共40页线性代数课程教案授课类型理论课授课时间2节授课题目(教学章节或主题):第一章行列式§1二阶与三阶行列式§2全排列及其逆序数§3阶行列式的定义§4对换本授课单元教学目标或要求:1.会用对角线法则计算2阶和3阶行列式。2.知道阶行列式的定义。本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):基本内容:行列式的定义1.计算排列的逆序数的方法设是这个自然数的任一排列,并规
2、定由小到大为标准次序。先看有多少个比大的数排在前面,记为;再看有多少个比大的数排在前面,记为;……最后看有多少个比大的数排在前面,记为;则此排列的逆序数为。2.阶行列式其中为自然数的一个排列,为这个排列的逆序数,求和符号∑是对所有排列求和。阶行列式中所含个数叫做的元素,位于第行第列的元素,叫做的元。3.对角线法则:只对2阶和3阶行列式适用第40页,共40页重点和难点:理解行列式的定义行列式的定义中应注意两点:1.1.1.1.1.1.1.1.(1)和式中的任一项是取自中不同行、不同列的个元素的乘积。由排列知识可知,中这样的乘积共有项。
3、(2)和式中的任一项都带有符号,为排列的逆序数,即当是偶排列时,对应的项取正号;当是奇排列时,对应的项取负号。综上所述,阶行列式恰是中所有不同行、不同列的个元素的乘积的代数和,其中一半带正号,一半带负号。例:写出4阶行列式中含有的项。解:和。例:试判断和是否都是6阶行列式中的项。解:下标的逆序数为,所以是6阶行列式中的项。下标的逆序数为,所以不是6阶行列式中的项。例:计算行列式解:本授课单元教学手段与方法:讲授与练习相结合首先通过二(三)元线性方程组的解的表达式引出二(三)阶行列式的定义。然后介绍有关全排列及其逆序数的知识,引出阶行
4、列式的定义。通过讨论对换以及它与排列的奇偶性的关系,引导学生了解行列式的三种等价定义。本授课单元思考题、讨论题、作业: §1P.261(1)(3)§22(5)(6)本授课单元参考资料(含参考书、文献等,必要时可列出)线性代数附册学习辅导与习题选讲(同济第四版)第40页,共40页线性代数课程教案授课类型理论课授课时间2节授课题目(教学章节或主题):第一章行列式§5行列式的性质§6行列式按行(列)展开§7克拉默法则本授课单元教学目标或要求:1.知道阶行列式的性质。2.知道代数余子式的定义和性质。3.会利用行列式的性质及按行(列)展开计
5、算简单的阶行列式。4.知道克拉默法则。本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):基本内容:1.行列式的性质(1)行列式与它的转置行列式相等。(2)互换行列式的两行(列),行列式变号。(3)行列式的某一行(列)中所有元素都乘以同一数,等于用数乘此行列式;或者行列式的某一行(列)的各元素有公因子,则可提到行列式记号之外。(4)行列式中如果有两行(列)元素完全相同或成比例,则此行列式为零。(5)若行列式的某一列(行)中各元素均为两项之和,则此行列式等于两个行列式之和。(6)把行列式的某一行(列
6、)的各元素乘以同一数然后加到另一行(列)的对应元素上去,行列式的值不变。2.行列式的按行(列)展开(1)把阶行列式中元所在的第行和第列划去后所成的阶行列式称为元的余子式,记作;记,则称为元的代数余子式。(2)阶行列式等于它的任一行(列)的各元素与对应于它们的代数余子式的乘积的和。即可以按第行展开:;或可以按第列展开:.(3)行列式中任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。即,或.3.克拉默法则含有个未知元的个线性方程的方程组第40页,共40页当全为零时,称为齐次线性方程组;否则,称为非齐次线性方程组。(
7、1)如果方程组的系数行列式,那么它有唯一解:,其中是把中第列元素用方程组的右端的自由项替代后所得到的阶行列式。(2)如果线性方程组无解或有两个不同的解,那么它的系数行列式。(3)如果齐次线性方程组的系数行列式,那么它只有零解;如果齐次线性方程组有非零解,那么它的系数行列式必定等于零。用克拉默法则解线性方程组的两个条件:(1)方程个数等于未知元个数;(2)系数行列式不等于零。克拉默法则的意义主要在于建立了线性方程组的解和已知的系数以及常数项之间的关系.它主要适用于理论推导.1.一些常用的行列式(1)上、下三角形行列式等于主对角线上的元
8、素的乘积。即特别地,对角行列式等于对角线元素的乘积,即.类似地,.(2)设,,则第40页,共40页.(1)范德蒙(Vandermonde)行列式计算行列式常用方法:(1)利用定义;(2)利用性质把行列式化为上三角形行列式,从而算得行列
此文档下载收益归作者所有