欢迎来到天天文库
浏览记录
ID:21938299
大小:820.00 KB
页数:27页
时间:2018-10-25
《“导数和其应用”教学研究》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、专题讲座高中数学“导数及其应用”教学研究李梁北京市西城区教育研修学院一、关于导数内容的深层理解(一)微积分的发展史简述一门科学的创立决不是某一个人的业绩,必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的,微积分也是这样.微积分的产生一般分为三个阶段:极限概念、求积的无限小方法积、分与微分的互逆关系.前两阶段的工作,欧洲及中国的大批数学家都作出了各自的贡献.最后一步是由牛顿、莱布尼兹各自独立完成的.在早至公元前430年安提丰为解决化圆为方问题而提出的”穷竭法”,就为微积分奠定了一定的基础,开始了极限
2、论的萌芽.后经过欧多克斯的加工到阿基米德的完善,穷竭法最终定型.阿基米德的贡献是积分学的萌芽.与此同时,战国时期庄子在《庄子·天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想.公元3世纪,刘徽在《九章算术》中提及割圆术“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣”用正多边形来逼近圆周.这是极限论思想的成功运用。他的极限思想和无穷小方法,也是世界古代极限思想的深刻体现.虽然最后是欧洲人真正的研究和完成了微积分的创立工作,但中国古代数学对于微积分的出色工作也是不可忽视的.从刘徽对圆锥、圆
3、台、圆柱的体积公式的证明到14世纪初弧矢割圆术、组合数学、计算技术改革和珠算等数学史上的重要成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键.中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门.可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了.至于欧洲,由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景.到了17世纪,由于生产力的提高和社会各
4、方面的迫切需要,有许多著名的数学家、天文学家、物理27学家都为解决上述问题做了大量的研究工作.如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献.1629年费尔玛给了如何确定极大极小值的方法,这是微分方法的第一个真正值得注意的先驱工作.其后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生.而笛卡尔等对解析几何的贡献也为微积分奠定了基础.但这些人的工作是零碎的,不连贯的,缺乏统一性.直到十七世纪下半叶,在前人
5、工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作.他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题).牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源.但牛顿是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即“流数术”理论,这实际上就是微积分理论.但牛顿的“流数术”
6、,在概念上是不够清晰的,理论上也不够严密,在运算步骤中具有神秘的色彩,还没有形成无穷小及极限概念.而莱布尼茨创立微积分的途径与方法与牛顿是不同的.莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展.莱布尼茨是数学史上最杰出的符号创造者之一.牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一等,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促
7、进了高等数学的发展.但由于受当时历史条件的限制,牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念比较模糊,因此引发了长期关于微积分的逻辑基础的争论和探讨.经过18、19世纪一大批数学家的努力,特别是在法国数学家柯西首先成功地建立了极限理论之后,以极限的观点定义了微积分的基本概念,并简洁而严格地证明了微积分基本定理即牛顿―莱布尼茨公式,才给微积分建立了一个基本严格的完整体系.(二)微积分在整个数学知识体系中的地位及作用微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微
8、积分学的非凡威力.微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律.此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会
此文档下载收益归作者所有