可计算的图像美学分类与评估

可计算的图像美学分类与评估

ID:21933154

大小:63.50 KB

页数:10页

时间:2018-10-25

可计算的图像美学分类与评估_第1页
可计算的图像美学分类与评估_第2页
可计算的图像美学分类与评估_第3页
可计算的图像美学分类与评估_第4页
可计算的图像美学分类与评估_第5页
资源描述:

《可计算的图像美学分类与评估》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、可计算的图像美学分类与评估长久以来,美学(美感)一直作为哲学问题来讨论.美的作品由人来进行创造和评判,并带给人们难以言表的愉悦和快乐.人们每天接收的信息中有超过90%是来自视觉,人们往往根据美感来进行判断和决策.如今,面对日益激增的海量数据,人类已经无法胜任繁杂的处理工作,希望计算机能够帮助人类进行辅助美学处理.例如,人们在检索图像时,希望系统返回的是让人赏心悦目的图像,自动滤除那些质量低、美感差的图像;在拍照或编辑图像时,希望在机器的辅助和指导下获得更具美感的结果.近年来,随着计算机视觉和模式识别等技术的快速发展,在计算机科学范畴提出了计算美学的概念,希望研究“美”的可计算方法,使计

2、算机能模拟人类自主地理解、推导和计算“美”,并在相关应用中做出可行的美学决策.图像美学可以定义为人们在观察图像时引发的美学兴趣.可计算的图像美学是计算美学在图像理解方面的重要探索,其研究目的是希望计算机能够模拟人类视觉及审美思维,进而对图像进行美学决策、建立计算机与视觉艺术作品之间的桥梁;使计算机能够自主地对图像的“美”进行定量的分析、计算和评价,比如评价美学指数、判断绘画的美学风格等;通过对图像的美学分析、计算和评估,理解用户的美学感受,帮助寻找到最适合用户心理需求、具有积极情感影响的目标和方案,这对于实现和谐的人机交互具有重要的意义.其研究结果可应用到融合主观感知的基于语义的图像检

3、索、图像美学质量评估、摄影的美学预测与修正、艺术作品风格分析、人机交互,以及设计、摄影、广告等领域.相关研究涉及到艺术、认知科学、心理学、计算机科学等多个学科,属于多学科交叉的创新性前沿研究课题,具有重要的理论价值和应用前景.由于审美的主观性和复杂性,可计算美学的研究存在一定的难度.1988年,李介谷撰写的《图像处理技术》一书中,曾提及Sasaki提出的关于美函数的概念,他认为图像之所以给人以美的印象与图像的总体布局有关,总体布局包括图像中各对象的布局和总体色调等.2005年,Hoening在计算机科学领域提出了可计算美学的研究,阐释了可计算美学的概念,推动了结合人类感知的可计算美学决

4、策应用的发展.针对图像美学分类与评价,宾夕法尼亚大学的)对高美感和低美感的图像进行分类;而后采用多元线性回归、利用图像特征评估图像美感分数值.虽然评估结果正确率不高,但显示出可计算图像美学分析是可行的.不少专家学者在其成果上进一步开展与图像美学评价相关的研究,如archesotti等设计了一种图像低层局部特征描述子来评估图像美学质量,给出了一种自底向上的特征提取思路.图像美学研究的另一个方向是基于美学规则的图像美化.Liu等利用三分法、对角占优等美学构图规则,通过调整原始图像的布局实现图像美化;Bhattacharya等将图像美学应用到图像修改和重建中,利用美学中的三分之一法则改变图像

5、中的主体目标的位置或对图像进行空间重构,以提升照片的视觉美感.总的来说,图像美学的相关研究在国内外刚刚兴起.在美学分类与评估方面,目前大部分研究只是简单地对图像的美感等级进行分类,其采用的图像特征相对简单,对包含重要信息的区域特征以及结合人类视觉感知的高层美学特征缺乏重视.1.图像美感分类与评估方案设计本文提出一种根据人类视觉及审美习惯来评价图像美学价值的可行方案,通过提取符合人类视觉审美的高层美学特征以及包含图像重要信息的区域特征,采用机器学习方法建立模型来实现模拟人类审美感知的图像美学自动评价.图1所示为本文图像美学自动评价系统的框架.图像的关键区域包含了重要的、主导图像内容的有用

6、信息,在很大程度影响了人们的审美决策.因此,本文不仅对图像整体区域进行分析,还提取了图像关键区域的特征.此外,为了克服低层视觉特征难以表述人类对图像美感感知的缺陷,在计算低层视觉特征的基础上,引人图像的复杂度特征、色彩均衡性特征、图像能量和景深特征等图像高层美学特征,使之能有效地描述图像,更符合人类对图像美感的感知.本文的可计算图像美学分析研究主要包括2部分:图像美感等级分类和美学分数评估.图像美感等级分类模型可自动将图像分为高美感和低美感2类,对应机器学习中的分类问题;图像美感分数评估模型可以自动给出图像美感的具体分值,对应于机器学习中的回归问题.本文分别采用SVM分类算法和支持向量

7、回归(supportvectorregression,SVR)算法对图像特征数据进行训练学习,建立了图像美感等级分类模型和图像美感分数评估模型,实现了机器自动对图像的高、低美感进行分类,并给出与人的审美思维相近的美学分数.2.图像关键区域提取SteP2.图像分割.显著性计算是基于像素的计算,要提取出关键区域,还需要与图像分割方法相结合.图像分割指的是将图像细分为多个图像子区域的过程.在图像分割问题中,MeanShift分割算法是一种比较成熟的算

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。