欢迎来到天天文库
浏览记录
ID:21907125
大小:56.00 KB
页数:6页
时间:2018-10-25
《基于神经网络的电阻点焊工艺参数优化》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、基于神经网络的电阻点焊工艺参数优化:本文提出了一种利用神经X络优化点焊机的参数方法。以实验数据为样本,通过神经X络建立焊接工艺参数与焊接质量的之间的复杂模型,利用神经X络对工艺参数进行优化。充分发挥神经X络的非线性映射能力。仿真显示了该方法的优越性和有效性。 关键词:电阻点焊;神经X络;消音锯片 0序言 电阻点焊过程是一个高度非线性,既有多变量静态叠加又有动态耦合,同时又具有大量随机不确定因素的复杂过程。这种复杂性使得传统方法确定最佳工艺参数存在操作复杂、精度低等缺陷。 本文通过深入研究提出了一种神经X络
2、优化消音锯片电阻点焊工艺参数方法。以试验数据为样本,通过神经X络,建立焊接工艺参数与焊接性能之间的复杂模型,充分发挥神经X络的非线性映射能力。为准确预测点焊质量提高依据。在运用试验手段、神经X络高度非线性拟合能力结合的方式,能在很大程度上克服传统方法的缺陷,完成X络的训练、检验和最优评价,为电阻点焊过程的决策和控制提供可靠依据。 1原理 人工神经X络是用物理模型模拟生物神经X络的基本功能和结构,可以在未知被控对象和业务模型情况下达到学习的目的。建立神经X络是利用神经X络高度并行的信息处理能力,较强的非线性映射能力
3、及自适应学习能力,同时为消除复杂系统的制约因素提供了手段。人工神经X络在足够多的样本数据的基础上,可以很好地比较任意复杂的非线性函数。另外,神经X络的并行结构可用硬件实现的方法进行开发。目前应用最成熟最广泛的一种神经X络是前馈多层神经X络(BP),通常称为BP神经X络。 神经X络方法的基本思想是:神经X络模型的X络输入与神经X络输出的数学关系用以表示系统的结构参数与系统动态参数之间的复杂的物理关系,即训练。我们发现利用经过训练的模型进行权值和阈值的再修改和优化(称之为学习)时,其计算速度要大大快于基于其他优化计算的
4、速度。 BP神经X络一般由大量的非线性处理单元——神经元连接组成的。具有大规模并行处理信息能力和极强的的容错性。每个神经元有一个单一的输出,但可以把这个输出量与下一层的多个神经元相连,每个连接通路对应一个连接权系数。根据功能可以把神经X络分为输入层,隐含层(一或多层),输出层三个部分。设每层输入为ui(q)输出为vi(q)。同时,给定了P组输入和输出样本,dp(p=200)。 (6) 该X络实质上是对任意非线性映射关系的一种逼近,由于采用的是全局逼近的方法,因而BPX络具有较好的泛化的能力。 我们主要是利用神
5、经X络的非线性自适应能力,将它用于消音锯片的电阻点焊过程。训练过程是:通过点焊实验获得目标函数与各影响因素间的离散关系,用神经X络的隐式来表达输入输出的函数关系,即将实验数据作为样本输入X络进行训练,建立输入输出之间的非线性映射关系,并将知识信息储存在连接权上,从而利用X络的记忆功能形成一个函数。不断地迭代可以达到sse(误差平方和)最小。 我们这次做的消音金刚石锯片电焊机,通过实验发现可以通过采用双隐层BP神经X络就可以很好的反应输入输出参数的非线性关系。输入神经元为3,分别对应3个电阻点焊工艺参数。输出神经元为
6、1,对应焊接质量指标参数。设第1隐含层神经元取为s1,第2隐含层神经元取为s2。输入层和隐含层以及隐层之间的激活函数都选取Log-Sigmoid型函数,输出层的激活函数选取Pureline型函数。 2点焊样本的选取 影响点焊质量的参数有很多,我们选取点焊时的控制参数,即点焊时间,电极力和焊接电流,在固定式点焊机上进行实验。选用钢种为50Mn2V,Φ600m的消音型薄型圆锯片基体为进行实验。对需要优化的参数为点焊时间,电极力和焊接电流3个参数进行的训练。最后的结果为焊接质量,通常以锯片的抗拉剪载荷为指标。 建立B
7、P神经X络时,选择样本非常重要。样本的选取关系到所建立的X络模型能否正确反映所选点焊参数和输出之间的关系。利用插值法,将输入变量在较理想的区间均匀分布取值,如果有m个输入量,每个输入量均匀取n个值(即每个输入量有m个水平数),则根据排列组合有nm个样本。对应于本例,有3个输入量,每个变量有5个水平数,这样训练样本的数目就为53=125个。 我们的实验,是以工人的经验为参考依据,发现点焊时间范围为2~8s,电极力范围为500~3000N,点焊电流范围为5~20kA时,焊接质量比较好。我们先取点焊电流,电极力为定量,在
8、合理的范围内不断改变点焊时间,得到抗拉剪载荷。如此,可以得到不同点焊电流和电极力的抗拉剪载荷。根据点焊数据的发布情况,我们共选用200组数据。部分测试数据如表1: 神经X络建模的关键是训练,而训练时随着输入参数个数的增加样本的排列组合数也急剧增加,这就给神经X络建模带来了很大的工作量,甚至于无法达到训练目的。 3神经X络 我们用200
此文档下载收益归作者所有