欢迎来到天天文库
浏览记录
ID:21861938
大小:62.00 KB
页数:12页
时间:2018-10-25
《数形结合课题开题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、word资料下载可编辑基于全国教育科学规划招标课题《“新大众数学”意义下的义务教育数学课程教材研究与整体设计》之子课题《数学基本思想在课堂教学中的运用特色研究》----以研读和运用“新世纪版《小学数学教材》编写特色为例”研究方案一、课题的背景及意义数学的灵魂是数学的精神和思想。弗里德曼说:“数学的逻辑结构的一个特殊的和最重要的要素就是数学思想,整个数学学科就是建立在这些思想的基础上,并按照这些思想发展起来的。”只有关注数学思想,才能引领学生触及数学的灵魂,促进理性精神的养成。数学思想究竟是什么?数学思想是指人们从某些具体数学内容和对数学的认识过程中抽象概括出来的,对数学知识内容的本质
2、认识,对所使用的方法和规律的理性认识。2011版《数学课程标准》指出:“数学思想蕴涵在数学知识的形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。”史宁中教授虽然没有明确定义数学思想,但对于什么是数学思想的标准却说得通俗易懂:数学产生和发展所依赖的思想,这是标准之一;学过数学的人与没有学过数学的人的根本差异,这是标准之二。前者是从数学学科的角度而言的,后者则是数学教育学的角度而言的。如果非要给数学思想一个定义的话,邵光华教授的说法:“专业技术资料word资料下载可编辑从数学教育角度来讲,我们认为数学思想应被理解为更高层次的理性认识,
3、那就是对于数学内容和方法的本质认识,是对数学内容和方法进一步的抽象和概括。”它具有普遍的指导意义和相对稳定的特征,是研究数学理论和运用数学解决实际问题的指导思想。数形结合思想在高考中占有重要的地位,其“数”与“形”的结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题几何化、几何问题代数化,使抽象思维和形象思维有机结合。在高考中无论是数学学科还是物理以及其他学科均有对数形结合思想的考查,而且在教学中要求必须掌握。这说明了数形结合方法在数学教学中具有重要的价值。应用“数形结合”能训练学生的创造性思维能力、发散性思维能力以及辩证性思维能力。“数形结合”可以看成是数学的
4、本质牲特征。“数形结合”是借助简单的图形、符号和文字所作的示意图,可促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。华罗庚先生说过:“数缺形时少直观,形缺数时难入微”,从这句话中可体现出数形结合对数学教学起着很主要的作用,把数形结合思想贯穿在学习数学过程的始终,是学好数学的关键。在我们的教学实践当中,教师对数形结合不够重视,关于数形结合教学理论缺乏,大部分学生了解数形结合,但未能充分、广泛运用数形结合去解决问题,这是值得我们去研究的问题。二、研究
5、内容及拟解决的关键问题专业技术资料word资料下载可编辑数形结合作为数学教学中非常重要的思想方法,早引起了许多专家学者和教师的关注。自笛卡尔创造了平面直角坐标系,数形结合的思想得到了突飞猛进的发展。我国著名的数学家华罗庚就说过:“数缺形时少直观,形少数时难入微.数形结合百般好,隔离分家万事休.”近些年来,国内外仍有许多学者发表了对数形结合思想的应用研究,不过由于数形结合思想应用范围极其广泛,所以,我认为目前对数形结合思想的研究仍有很大的空间。具体做法有如下设想:1、全面认识数形结合思想方法,挖掘教材中蕴含数形结合思想方法的内容,分析数形结合思想方法在数学教学中的价值和功能。2、针对不
6、同的教学问题,探索渗透数形结合思想方法的教学策略。3、探索让学生更好地理解、掌握数学知识,提高数学能力的同时,也学会运用数形结合分析、解决问题的教学途径。三、文献综述及必要的概念界定所谓数形结合,就是把握数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合。它将“静态”为“动态”,变“无形”为“有形”。它一方面是解题的过程,又是学生形象思维与抽象思维协同运用互相促进,共同发展的过程,对提高学生的观察能力和思维能力是非常有帮助的。专业技术资料word资料下载可编辑数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。数学是研究实现世界的数量关系
7、与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。这里的数是指数、代数式、方程、函数、数量关系式等,这里的形式是指几何图形和函数图象。在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。数形结合思想的核心应是代数与几何
此文档下载收益归作者所有