余弦定理教学设计

余弦定理教学设计

ID:21798534

大小:340.50 KB

页数:10页

时间:2018-10-24

余弦定理教学设计_第1页
余弦定理教学设计_第2页
余弦定理教学设计_第3页
余弦定理教学设计_第4页
余弦定理教学设计_第5页
资源描述:

《余弦定理教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1.1.2余弦定理教学设计一、教学目标认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形;能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。二、教学重难点重点:探究和证明余弦定

2、理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。三、学情分析和教学内容分析在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素

3、材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。四、教学过程环节一【创设情境】1、复习引入让学生回答正弦定理的内容和能用这个定理解决哪些类型的问题。ABC图12、情景引入如图1,某隧道施工队为了开凿一条山地隧道,需要测算隧道通过这座山的长度。工程技术人员先在地面上选一适当的位置A,量出A到山脚B、C的距离,再利用经纬仪测出A对山脚BC(即线段BC

4、)的张角,最后通过计算求出山脚的长度BC。学生不难将这个实际问题转化到数学问题:已知三角形的两边和一个夹角,去求三角形的另外一边。这个问题是不能使用正弦定理来求解的。学生急切的希望应用新知识来解决这个问题。环节二【导入新课】问题:在△ABC中,当∠C=90°时,有c2=a2+b2.若a,b边的长短不变,变换∠C的大小时,c2与a2+b2有什么大小关系呢?请同学们思考。-10-教师鼓励学生积极思考,大胆发言,启发学生解决问题,学生回答,借助于多媒体动画演示结果。如图2,若∠C<90°时,由于AC与BC的长度不变,所

5、以AB的长度变短,即c2<a2+b2.CBAB’图2ACB’B图3  如图3,若∠C>90°时,由于AC与BC的长度不变,所以AB的长度变长,即c2>a2+b2.经过议论学生已得到当∠C≠90°时,c2≠a2+b2。环节三【新课探究】探究1、在上一个问题中,我们已经知道,当∠C≠90°时,c2≠a2+b2。那么c2与a2+b2到底有什么等量关系呢?请同学们继续探究。教师引导学生分组合作学习,可让几个小组的学生研究当∠C为锐角时的结论,另外的小组研究当∠C为钝角时的结论。最后交流探索,展示成果。如图4,当∠C为锐角

6、时,作BD⊥AC于D,BD把△ABC分成两个直角三角形:ACBD图4  在Rt△ABD中,AB2=AD2+BD2;在Rt△BDC中,BD=BC·sinC=asinC,DC=BC·cosC=acosC.所以,AB2=AD2+BD2化为  c2=(b-acosC)2+(asinC)2,  c2=b2-2abcosC+a2cos2C+a2sin2C,  c2=a2+b2-2abcosC.  可以看出∠C为锐角时,△ABC的三边a,b,c具有c2=a2+b2-2abcosC的关系。    如图5,当∠C为钝角时,作BD⊥

7、AC,交AC的延长线于D。BADC图5  △ACB是两个直角三角形之差。-10-  在Rt△ABD中,AB2=AD2+BD2.  在Rt△BCD中,∠BCD=π-C.  BD=BC·sin(π-C),CD=BC·cos(π-C).  所以AB2=AD2+BD2化为  c2=(AC+CD)2+BD2  =[b+acos(π-C)]2+[asin(π-C)]2  =b2+2abcos(π-C)+a2cos2(π-C)+a2sin2(π-C)  =b2+2abcos(π-C)+a2.  因为cos(π-C)=-cosC

8、,所以也可以得到c2=b2+a2-2abcosC。  教师点拨:以上两种情况,我们可以考察向量在向量方向上的正射影的数量:当∠C分别是锐角和钝角的时候,得到两个数量符号相反;当∠C是直角的时候,其向量在直角边上的正射影的数量为零。因此,无论是∠C是锐角、直角还是钝角,都有,在Rt△ADB中,运用勾股定理,得c2=a2+b2-2abcosC,我们轮换∠A,∠B,∠C的位置可

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。