欢迎来到天天文库
浏览记录
ID:21788393
大小:872.50 KB
页数:10页
时间:2018-10-24
《答案 9上第一次月考》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、四川外语学院重庆第二外国语学校2014—2015学年度九年级上期第一次质量检测数学试题(试题卷)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.若一个正方形的边长为,则它的面积是(C)A.B.C.D.2.线段是成比例线段,,则的长为(A)A.B.C.D.3.一元二次方程的根是(B)A.B.C.D.4.下列函数中,图象经过点的是(D)A.B.C.D.5.如图,要使平行四边形成为矩形,需添加的条件是(
2、C)A.B.C.D.63333.用配方法解方程时,配方后所得的方程为(D)A.B.C.D.7.已知点,和都在反比例函数的图象上,则的大小关系是(C)A.B.C.D.第10页共10页(试题卷)命题:代清伦代雨秋8.如图,小强自制了一个小孔成像装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛与纸筒的距离应该为(D)A.B.C.D.9.如图,在菱形中,对角线与相交于点,,垂足为,若,则的大小是(B)A.B.C.D.10.新华商场销售某种冰箱,每台进价为元,销售价为元,平均每天能售出台;调查发现,当销售价每降低元,平均每天就能多售出台.商场要想使这种冰箱的销
3、售利润平均每天达到元,每台冰箱应该降价多少元?若设每台冰箱降价元,根据题意可列方程(B)A.B.C.D.11.如图,小宋作出了边长为的第一个正方形,算出了它的面积.然后分别取正方形四边的中点作出了第二个正方形,算出了它的面积.用同样的方法,作出了第三个正方形,算出了它的面积……,由此可得,第六个正方形的面积是(A)A.B.C.D.12.如图,正方形位于第一象限,,顶点在直线上,且的横坐标为,若双曲线与正方形有交点,则的取值范围是(C)A.或B.C.D.或第10页共10页(试题卷)命题:代清伦代雨秋二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将答案填
4、在题后的横线上.13.一元二次方程的常数项是____2______;14.已知,(),则;15.如图,点在反比例函数(的图象上,过点向轴作垂线,垂足为,连接,则的面积为_____1_____;16.如图,在矩形中,点分别是的中点,连接和,分别取的中点,连接.若,,则图中阴影部分的面积为___________;17.从这五个数中,取一个数作为函数和关于的方程中的值,恰好使所得函数的图象经过第二、四象限,且方程有实根,满足要求的的值共有____3______个;18.如图,正方形的顶点是坐标原点,顶点在轴的正半轴上,,点是边的中点,连接,点在上且,过点作∥交于点,交于点,连接,
5、过点作,垂足为,若边上有一点与点在同一反比例函数的图象上,则点的坐标为__________;第10页共10页(试题卷)命题:代清伦代雨秋三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.已知:,求的值.解:由已知得:……………………(2分)……………………(4分)……………………(6分)……………………(7分)20.如图,分别是的边、上的点,,,,且,求的长.解:,又……………………(3分)……………………(5分)……………………(7分)第10页共10页(试题卷)命题:代清伦代雨秋四、解答题:(本大题共4个小题,每小题
6、10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.解方程:(1)解:这里:………………(2分)………………(4分)………………(5分)(2)解:因式分解,得………………(3分)………………(4分)………………(5分)22.如图,在矩形中,对角线与相交于点,过点作∥,过点作∥,两线相交于点.求证:四边形是菱形.证明:四边形为平行四边形………………(4分)又四边形是矩形………………(8分)四边形是菱形………………(10分)23.如图,反比例函数与一次函数的图象都经过第二象限的点与第四象限的点,且一次函数的图象交轴于点,交轴于点.第10页共10页(试题卷)命题
7、:代清伦代雨秋23题图(1)求反比例函数和一次函数的关系式;(2)求的面积.解:(1)将点代入中,得………………(3分)将点代入中,得将点,代入中,得解得:………………(6分)(2)点过点A作于点E,过点B作于点F, ………………(10分)第10页共10页(试题卷)命题:代清伦代雨秋23.如图,在□中,对角线与相交于点,平分且交于点,交的延长线于点;作交于点,交于点.(1)求证:;(2)若,,求的长.(1)证明:O为BD中点OD=OB在□中,AD//BC,AB//DC………………(1分)在……………
此文档下载收益归作者所有