欢迎来到天天文库
浏览记录
ID:21678963
大小:120.86 KB
页数:9页
时间:2018-10-23
《(完全)弹性碰撞后的速度公式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、如何巧记弹性碰撞后的速度公式一、“一动碰一静”的弹性碰撞公式问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度?图1设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得:m1v1=m1v1'+m2v2' ① ②由① ③由② ④由④/③ ⑤联立①⑤解得
2、 ⑥ ⑦上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得:m1v1= (m1+m2) v共解出v共=m1v1 /(m1+m2) 。而两球从球心相距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式, 因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m
3、2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式。再结合①式也可很容易解得⑥⑦式。二、“一动碰一动”的弹性碰撞公式问题:如图2所示,在光滑水平面
4、上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度?图2设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得:m1v1+m2v2=m1v1'+m2v2' ① ②由① ③ 由② ④ 由④/③ ⑤由③⑤式可以解出 ⑥ ⑦要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果
5、采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等效成m1以速度v1去碰静止的m2球,再同时加上m2球以速度碰静止的m1球。因此由前面“一动碰一静”的弹性碰撞公式,可得两球碰撞后各自的速度+;+,即可得到上面的⑥⑦式。另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1- v2等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式,再结合①式可解得⑥⑦式。例题:如图3所示,有大小两个钢球,下面一个的质量为m2,上面一个的质量为m1,m2=3m1。它们由地平面上高h处下落。假定大球在和
6、小球碰撞之前,先和地面碰撞反弹再与正下落的小球碰撞,而且所有的碰撞均是弹性的,这两个球的球心始终在一条竖直线上,则碰后上面m1球将上升的最大高度是多少?图3解法1:设两球下落h后的速度大小为v1,则v12=2gh ①选向上为正方向,m2球与地面碰撞后以速度v1反弹并与正在以速度-v1下落的m1球发生弹性碰撞,设m1和m2两球碰撞后瞬间的速度分别变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1(-v1)+m2v1=m1v1
7、'+m2v2' ② ③将m2=3m1代入,得2v1=v1'+3v2' ④ ⑤由④⑤式消去v2'得:即故解出v1'=v1(舍去,因为该解就是m1球碰前瞬间的速度)v1'=2v1 ⑥设碰后上面球m1上升的最大高度为h',则0-v1'2=-2gh' ⑦联立①⑥⑦式解出h'=4h。解法2:
8、在解法1中,列出②③式后,可根据前面介绍的用等效法得到的“一动碰一动”的弹性碰撞公式,求出m1球碰撞后瞬间的速度v1'。选向上为正方向,m1、m2两球分别以速度-v1和v1发生对心弹性碰撞,可等效成m1以速度-v1去碰静止的m2球,再同时加上m2球
此文档下载收益归作者所有