简单数学建模100例

简单数学建模100例

ID:21555712

大小:613.00 KB

页数:22页

时间:2018-10-22

简单数学建模100例_第1页
简单数学建模100例_第2页
简单数学建模100例_第3页
简单数学建模100例_第4页
简单数学建模100例_第5页
资源描述:

《简单数学建模100例》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、“学”以致用-----简单数学建模应用问题100例数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、

2、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的.二.模型假设有了模型准备的基

3、础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善.三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则.四.模型解析在模型构成中建

4、立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。五.模型检验与应用把模型解析得到的结果与实际情况对比,以检验其合理和有效性,检验后获取的正确模型对研究的实际问题给出预报或对类似实际问题进行分析、解释,以供决策者参考称为.不难发现,在上述的五个步骤中,关键的是第三步“模型构成”——由数字、字母或其它数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。所以说模型构成是数学建模的核心,它和数学的关系最密切。所得出的数学公式、图形或

5、算法称之为数学模型(即解决实际问题的数学描述)。通常所说的数学建模实际上就是:寻找有用的数学模型的过程为了避免作业书写中不必要的繁琐,通常用“分析”,“假设”,“模型”,“解析”,“检验”来表示数学建模的五个不同步骤,虽然每题不一定面面俱到,但假设,模型,解析三个步骤要求明确第一关:接触数学建模【1】一副扑克牌有54张,从中任取多少张,可以保证一定有5张牌的花色是一样的?分析除去大、小鬼还有52张牌,其中4种花色各13张.运气最好的情况下所取的5张牌都是同一花色的,哪运气不佳时至少要取多少张牌,才能保证一定有5张牌的花色是一样

6、的呢?假设假定至少要取张,才能保证一定有5张牌的花色是一样的.模型逆向地思维解析在运气最不好的情况下,每种花色各4张,再加大、小鬼2张,共取18张是保证一定没有5张牌的花色一样的最大可能。所以张就可以保证一定有5张牌的花色是一样的.检验在很多情况下采用逆向地思维,可以使解题思路清晰、便捷.练习题公园里准备对300棵珍稀树木依次从1—300进行编号,问所有的编号中“1”共会出现的几次?【2】一只猫发现离它10步远的前方有一只老鼠在奔跑,猫便紧追。猫的步子大,它跑5步的路程,老鼠要跑9步。但是老鼠的动作频率快,猫跑2步的时间,老鼠

7、能跑3步。请问:按照这种速度,猫能追得上老鼠吗?如果能,它要跑多少步才能追到。假设此题两问可归结为一个问题:假定猫跑步就能追上老鼠模型猫与老鼠之间频率的最小公倍数解析由频率关系可知,老鼠跑步时,猫跑了步.根据路程关系知,猫跑6步其中有1步是追上老鼠的路程可得本题的数学模型为解得(步)检验由此可见,按照现有速度,猫要跑60步才能追得上老鼠.练习题现有玩具模型20个,交给小黄加工,规定加工合格一个可得5元,不合格一个扣2元,未完成的不得不扣.最后小黄共得到56元.问小黄在加工玩具模型中不合格的共有几个?【3】在小傅家门口有一个十字

8、型的交通路口(如图所示),小傅就想了,警察叔叔需要指挥多少种情况的汽车运行线路?分析此问题需要分是否可以原路调头的情况来讨论.假设(1)每条线路都有往返双向线(2)设4条路分别为A,B,C,D;(3)以A为起始,①如允许原路调头,则有②如不允许原路调头,则有模型分步乘法计数原

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。