资源描述:
《位似图形课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、①PA②③④⑤BCDEF..位似图形1.前面我们已经学习了图形的哪些变换?相似:相似比.平移:平移的方向,平移的距离.注:图形这些不同的变换是我们学习几何必不可少的重要工具,它不但装点了我们的生活,而且是学习后续知识的基础.回顾与反思下面请欣赏如下图形的变换旋转:(中心对称)旋转中心,旋转方向,旋转角度.轴对称:对称轴,观察与思考☞下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?对应边有何位置关系?概念与性质1.位似图形的概念如
2、果两个图形不仅相似,而且每组对应点所在的直线都经过同一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.这时两个相似图形的相似比又叫做它们的位似比.相似对应点的连线相交一点对应边平行明确:作出下列位似图形的位似中心:OO判断下面的正方形是不是位似图形?想一想(1)不是ACDBFEG显然,位似图形是相似图形的特殊情形.相似图形不一定是位似图形,可位似图形一定是相似图形思考:位似图形有何性质?观察下图中的五个图,回答下列问题:(1)在各图中,位似图形的位似中心与这两个图形有什么位置关系?位似中心可以在两个
3、图形的同侧,或两个图形之间,或图形内还可以在一个图形的边上或顶点.议一议☞观察下图中的五个图,回答下列问题:(2)在各图中,任意一对对应点到位似中心的距离比与位似比有什么关系?位似图形上任意一对对应点到位似中心的距离之比等于位似比.议一议☞2.位似图形的性质(2)位似图形上任意一对对应点到位似中心的距离之比等于相似比.概念与性质(3)位似图形中的对应线段平行(或在一条直线上).(1)位似图形是相似图形,具备相似图形的所有性质若△ABC与△A’B’C’的相似比为:1:2,则OA:OA’=()。OAA’BCB’C’1:2想一想
4、DEFAOBCDEFOABC利用位似可以把一个图形放大或缩小1.如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长扩大到原来的两倍.图形与画法如果把位似图形放到直角体系中,又如何去探究位似变换与坐标之间的关系呢?画位似图形的步骤有哪些?B'A'xyBAo在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.A′(2,1),B′(2,0)观察对应点之间的坐标的变化,你有什么发现?位似变换与坐标B'A'xyBAo在平面直角坐标系中,有两点A(
5、6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.A′(2,1),B′(2,0)A〞B〞A〞(-2,-1),B(-2,0)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.观察对应点之间的坐标的变化,你有什么发现?在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k例如:点A(x,y)的对应点为A’,则A’点的坐标可以这样确定归纳:xA’=xA×k,yA'=yA×kxA’=xA×(-k),y
6、A'=yA×(-k)或即A’(kx,ky)即A’(-kx,-ky)△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,点A的对应点A′的坐标为____________A′(4,6)或(-4,-6)想一想xyo例题.在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为1/2的位似图形.A′(-3,3),B′(-4,1),C′(-2,0),D′(-1,2)BA
7、CDA′B′C′D′你还有其他办法吗?试试看.xyoB如图表示△AOB和把它缩小后得到的△COD,写出它们的相似比ACD练一练:1.画出基本图形2.选取位似中心3.根据条件确定对应点,并描出对应点4.顺次连结各对应点,所成的图形就是所求的图形一、定义及性质:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k二、位似图形的画法:三、位似变换与坐标的关系:课堂小结回味无穷位似图形的概念:如果两个图形不仅形状相同,而且所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,
8、这个点叫做位似中心,这时的相似比又称为位似比.位似图形的性质:1.位似图形是相似图形,具备相似图形的所有性质2.位似图形上的任意一对对应点到位似中心的距离之比等于位似比3.位似图形中的对应线段平行(或在一条直线上).课堂小结我们学过的图形变换有:平移,轴对称,旋转,位似。(1)平移:上下移:横坐标不变,