控制系统的状态空间分析与综合

控制系统的状态空间分析与综合

ID:21396019

大小:2.18 MB

页数:24页

时间:2018-10-21

控制系统的状态空间分析与综合_第1页
控制系统的状态空间分析与综合_第2页
控制系统的状态空间分析与综合_第3页
控制系统的状态空间分析与综合_第4页
控制系统的状态空间分析与综合_第5页
资源描述:

《控制系统的状态空间分析与综合》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第8章控制系统的状态空间分析与综合第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就

2、是美国学者卡尔曼引入了状态空间的概念。它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。(1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。(2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。8.1控制系统的状态空间描述8.1.1系统数学描述的两种基本方法控制u执行器被控对象传感器控制器控制输入观测y被控过程x反馈控制图8-1典型控制系统方块图350典型控制系统如图8-1所示,由被控对象、传感器、执行器

3、和控制器组成。被控过程(见图8-2)具有若干输入端和输出端。数学描述通常有两种基本方法:一种是输入、输出描述(外部描述),它将系统看成为“黑箱”,只是反映输入与输出间的关系,而不去表征系统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。一个反映系统内部变量和输入变量间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量与内部变量及输入变量间的关系,具有代数方程的形式。外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的

4、两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。图8-2被控过程8.1.2状态空间描述常用的基本概念1.输入和输出由外部施加到系统上的激励称为输入,若输入是按需要人为施加的,又称为控制;系统的被控量或从外部测量到的系统信息称为输出,若输出是由传感器测量得到的,又称为观测。2.状态、状态变量和状态向量能完整描述和惟一确定系统时域行为或运行过程的一组独立(数目最小)的变量称为系统的状态,其中的各个变量称为状态变量。当状态表示成以各状态变量为分量组成的向量时,称为状态向量。系统的状态由时

5、的初始状态()及的输入惟一确定。对阶微分方程描述的系统,当个初始条件及的输入给定时,可惟一确定方程的解,故这n个独立变量可选作状态变量。状态对于确定系统的行为既是必要的,也是充分的。n阶系统状态变量所含独立变量的个数为n,当变量个数小于n时,便不能完全确定系统的状态,而当变量个数大于n时,则存在多余的变量,这些多余的变量就不是独立变量。判断变量是否独立的基本方法是看它们之间是否存在代数约束。350状态变量的选取并不惟一,一个系统通常有多种不同的选取方法。但应尽量选取能测量的物理量或独立贮能元件的贮能变量作为状态变量,以便实现系统设计。在机械

6、系统中,常选取位移和速度作为变量;在R-L-C网络中,常选电感电流和电容电压作为状态变量;在由传递函数绘制的方块图中,常取积分器的输出作为状态变量。3.状态空间以状态向量的n个分量作为坐标轴所组成的n维空间称为状态空间。4.状态轨迹系统在某个时刻的状态,可以看作是状态空间的一个点。随着时间的推移,系统状态不断变化,便在状态空间中描绘出一条轨迹,该轨迹称为状态轨迹。5.状态方程描述系统状态变量与输入变量之间关系的一阶向量微分方程或差分方程称为系统的状态方程,它不含输入的微积分项。状态方程表征了系统由输入所引起的状态变化,一般情况下,状态方程既

7、是非线性的,又是时变的,它可以表示为(8-1)6.输出方程描述系统输出变量与系统状态变量和输入变量之间函数关系的代数方程称为输出方程,当输出由传感器得到时,又称为观测方程。输出方程的一般形式为(8-2)输出方程表征了系统状态和输入的变化所引起的系统输出变化。7.动态方程状态方程与输出方程的组合称为动态方程,又称为状态空间表达式,其一般形式为(8-3a)或离散形式(8-3b)8.线性系统:线性系统的状态方程是一阶向量线性微分方程或差分方程,输出方程是向量代数方程。线性连续时间系统动态方程的一般形式为350(8-4)设状态x、输入u、输出y的维

8、数分别为,称矩阵A(t)为系统矩阵或状态矩阵,称矩阵为控制矩阵或输入矩阵,称矩阵C(t)为输出矩阵或观测矩阵,称矩阵D(t)为前馈矩阵或输入输出矩阵。9.线性定常系统线性系统的A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。