高中数学讲义微专题12 复合函数零点问题

高中数学讲义微专题12 复合函数零点问题

ID:21394914

大小:964.14 KB

页数:5页

时间:2018-10-21

高中数学讲义微专题12  复合函数零点问题_第1页
高中数学讲义微专题12  复合函数零点问题_第2页
高中数学讲义微专题12  复合函数零点问题_第3页
高中数学讲义微专题12  复合函数零点问题_第4页
高中数学讲义微专题12  复合函数零点问题_第5页
资源描述:

《高中数学讲义微专题12 复合函数零点问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、www.ks5u.com12复合函数零点问题一、典型例题例1:设定义域为的函数,若关于的方程由3个不同的解,则______例2:关于的方程的不相同实根的个数是()A.3B.4C.5D.8思路:可将视为一个整体,即,则方程变为可解得:或,则只需作出的图像,然后统计与与的交点总数即可,共有5个答案:C例3:已知函数,关于的方程()恰有6个不同实数解,则的取值范围是.思路:所解方程可视为,故考虑作出的图像:,则的图像如图,由图像可知,若有6个不同实数解,则必有,所以,解得答案:例4:已知定义在上的奇函数,当时,,则关于的方程的实数根个数为()A.

2、B.C.D.思路:已知方程可解,得,只需统计与的交点个数即可。由奇函数可先做出的图像,时,,则的图像只需将-5-的图像纵坐标缩为一半即可。正半轴图像完成后可再利用奇函数的性质作出负半轴图像。通过数形结合可得共有7个交点答案:B小炼有话说:在作图的过程中,注意确定分段函数的边界点属于哪一段区间。例5:若函数有极值点,且,则关于的方程的不同实根的个数是()A.3B.4C.5D.6思路:由极值点可得:为①的两根,观察到方程①与结构完全相同,所以可得的两根为,其中,若,可判断出是极大值点,是极小值点。且,所以与有两个交点,而与有一个交点,共计3个;

3、若,可判断出是极小值点,是极大值点。且,所以与有两个交点,而与有一个交点,共计3个。综上所述,共有3个交点答案:A例6:已知函数,若方程恰有七个不相同的实根,则实数的取值范围是()A.B.C.D.思路:考虑通过图像变换作出的图像(如图),因为最多只能解出2个,若要出七个根,则,所以,解得:答案:B例7:已知函数,若关于的方程恰有4个不相等的实数根,则实数的取值范围是()-5-A.B.C.D.思路:,分析的图像以便于作图,时,,从而在单调递增,在单调递减,,且当,所以正半轴为水平渐近线;当时,,所以在单调递减。由此作图,从图像可得,若恰有4个

4、不等实根,则关于的方程中,,从而将问题转化为根分布问题,设,则的两根,设,则有,解得答案:C小炼有话说:本题是作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。例8:已知函数,则下列关于函数的零点个数判断正确的是()A.当时,有4个零点;当时,有1个零点B.当时,有3个零点;当时,有2个零点C.无论为何值,均有2个零点D.无论为何值,均有4个零点思路:所求函数的零点,即方程的解的个数,先作出的图像,直线为过定点的一条直线,但需要对的符号进行分类讨论。当时,图像如

5、图所示,先拆外层可得,而有两个对应的,也有两个对应的,共计4个;当时,的图像如图所示,先拆外层可得,且只有一个满足的,所以共一个零点。结合选项,可判断出A正确答案:A-5-例9:已知函数,则方程(为正实数)的实数根最多有___________个思路:先通过分析的性质以便于作图,,从而在单增,在单减,且,为分段函数,作出每段图像即可,如图所示,若要实数根最多,则要优先选取能对应较多的情况,由图像可得,当时,每个可对应3个。只需判断中,能在取得的值的个数即可,观察图像可得,当时,可以有2个,从而能够找到6个根,即最多的根的个数答案:6个例10:

6、已知函数和在的图像如下,给出下列四个命题:(1)方程有且只有6个根(2)方程有且只有3个根(3)方程有且只有5个根(4)方程有且只有4个根-5-则正确命题的个数是()A.1B.2C.3D.4思路:每个方程都可通过图像先拆掉第一层,找到内层函数能取得的值,从而统计出的总数。(1)中可得,进而有2个对应的,有3个,有2个,总计7个,(1)错误;(2)中可得,进而有1个对应的,有3个,总计4个,(2)错误;(3)中可得,进而有1个对应的,有3个,有1个,总计5个,(3)正确;(4)中可得:,进而有2个对应的,有2个,共计4个,(4)正确则综上所述

7、,正确的命题共有2个答案:B-5-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。