欢迎来到天天文库
浏览记录
ID:21117567
大小:91.50 KB
页数:4页
时间:2018-10-19
《圆与方程测试题及答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、圆与方程测试题一、选择题1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为().A.B.5C.25D.2.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是().A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=43.以点(-3,4)为圆心,且与x轴相切的圆的方程是().A.(x-3)2+(y+4)2=16B.(x+3)2+(y-4)2=16C.(x-3)2+(y
2、+4)2=9D.(x+3)2+(y-4)2=194.若直线x+y+m=0与圆x2+y2=m相切,则m为().A.0或2B.2C.D.无解5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是().A.8B.6C.6D.46.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为().A.内切B.相交C.外切D.相离7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是().A.x+y-1=0B.2x-
3、y+1=0C.x-2y+1=0D.x-y+1=08.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有().A.4条B.3条C.2条D.1条9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述:点M关于x轴对称点的坐标是M1(a,-b,c);点M关于yoz平面对称的点的坐标是M2(a,-b,-c);点M关于y轴对称的点的坐标是M3(a,-b,c);点M关于原点对称的点的坐标是M4(-a,-b,-c).其中正确的叙述的个数是().A.3B.2C.1D.010.空间直角坐标系中,点A
4、(-3,4,0)与点B(2,-1,6)的距离是().A.2B.2C.9D.二、填空题11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为.12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为.13.以点C(-2,3)为圆心且与y轴相切的圆的方程是.14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值.15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为.16.设圆x2+y2-4x-5=0的弦AB的中点为P(3
5、,1),则直线AB的方程是.第4页共4页三、解答题17.求圆心在原点,且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程.18.求过原点,在x轴,y轴上截距分别为a,b的圆的方程(ab≠0).19.求经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距之和是2的圆的方程.20.求经过点(8,3),并且和直线x=6与x=10都相切的圆的方程.第4页共4页圆与方程参考答案一、选择题1.B圆心C与点M的距离即为圆的半径,=5.2.C解析一:由圆心在直线x+y-2=0上可以得到A,C满足
6、条件,再把A点坐标(1,-1)代入圆方程.A不满足条件.∴选C.解析二:设圆心C的坐标为(a,b),半径为r,因为圆心C在直线x+y-2=0上,∴b=2-a.由
7、CA
8、=
9、CB
10、,得(a-1)2+(b+1)2=(a+1)2+(b-1)2,解得a=1,b=1.因此圆的方程为(x-1)2+(y-1)2=4.3.B解析:∵与x轴相切,∴r=4.又圆心(-3,4),∴圆方程为(x+3)2+(y-4)2=16.4.B解析:∵x+y+m=0与x2+y2=m相切,∴(0,0)到直线距离等于.∴=,∴m=2.5.
11、A解析:令y=0,∴(x-1)2=16.∴x-1=±4,∴x1=5,x2=-3.∴弦长=
12、5-(-3)
13、=8.6.B解析:由两个圆的方程C1:(x+1)2+(y+1)2=4,C2:(x-2)2+(y-1)2=4可求得圆心距d=∈(0,4),r1=r2=2,且r1-r2<d<r1+r2故两圆相交,选B.7.A解析:对已知圆的方程x2+y2-2x-5=0,x2+y2+2x-4y-4=0,经配方,得(x-1)2+y2=6,(x+1)2+(y-2)2=9.圆心分别为C1(1,0),C2(-1,2).直线C
14、1C2的方程为x+y-1=0.8.C解析:将两圆方程分别配方得(x-1)2+y2=1和x2+(y+2)2=4,两圆圆心分别为O1(1,0),O2(0,-2),r1=1,r2=2,
15、O1O2
16、==,又1=r2-r1<<r1+r2=3,故两圆相交,所以有两条公切线,应选C.9.C解:①②③错,④对.选C.10.D解析:利用空间两点间的距离公式.二、填空题11.2.解析:圆心到直线的距离d==3,∴动点Q到直线距离的最小值为d-r=3-1=2.12.(x-1)2+(y-1)2=1.解析:
此文档下载收益归作者所有