厦门大学《应用多元统计分析》第05章_聚类分析

厦门大学《应用多元统计分析》第05章_聚类分析

ID:21003770

大小:2.97 MB

页数:96页

时间:2018-10-17

厦门大学《应用多元统计分析》第05章_聚类分析_第1页
厦门大学《应用多元统计分析》第05章_聚类分析_第2页
厦门大学《应用多元统计分析》第05章_聚类分析_第3页
厦门大学《应用多元统计分析》第05章_聚类分析_第4页
厦门大学《应用多元统计分析》第05章_聚类分析_第5页
资源描述:

《厦门大学《应用多元统计分析》第05章_聚类分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五章聚类分析第一节引言第二节相似性的量度第三节系统聚类分析法第四节K均值聚类分析第五节有序样品的聚类分析法第六节实例分析与计算机实现第一节引言“物以类聚,人以群分”。对事物进行分类,是人们认识事物的出发点,也是人们认识世界的一种重要方法。因此,分类学已成为人们认识世界的一门基础科学。在生物、经济、社会、人口等领域的研究中,存在着大量量化分类研究。例如:在生物学中,为了研究生物的演变,生物学家需要根据各种生物不同的特征对生物进行分类。在经济研究中,为了研究不同地区城镇居民生活中的收入和消费情况,往往需要划分不同的类型去研究。在地质学中,为了研究矿物勘

2、探,需要根据各种矿石的化学和物理性质和所含化学成分把它们归于不同的矿石类。在人口学研究中,需要构造人口生育分类模式、人口死亡分类状况,以此来研究人口的生育和死亡规律。但历史上这些分类方法多半是人们主要依靠经验作定性分类,致使许多分类带有主观性和任意性,不能很好地揭示客观事物内在的本质差别与联系;特别是对于多因素、多指标的分类问题,定性分类的准确性不好把握。为了克服定性分类存在的不足,人们把数学方法引入分类中,形成了数值分类学。后来随着多元统计分析的发展,从数值分类学中逐渐分离出了聚类分析方法。随着计算机技术的不断发展,利用数学方法研究分类不仅非常必要

3、而且完全可能,因此近年来,聚类分析的理论和应用得到了迅速的发展。聚类分析就是分析如何对样品(或变量)进行量化分类的问题。通常聚类分析分为Q型聚类和R型聚类。Q型聚类是对样品进行分类处理,R型聚类是对变量进行分类处理。第二节相似性的量度一样品相似性的度量二变量相似性的度量一、样品相似性的度量在聚类之前,要首先分析样品间的相似性。Q型聚类分析,常用距离来测度样品之间的相似程度。每个样品有p个指标(变量)从不同方面描述其性质,形成一个p维的向量。如果把n个样品看成p维空间中的n个点,则两个样品间相似程度就可用p维空间中的两点距离公式来度量。两点距离公式可以

4、从不同角度进行定义,令dij表示样品Xi与Xj的距离,存在以下的距离公式:1.明考夫斯基距离(5.1)明考夫斯基距离简称明氏距离,按的取值不同又可分成:欧氏距离是常用的距离,大家都比较熟悉,但是前面已经提到,在解决多元数据的分析问题时,欧氏距离就显示出了它的不足之处。一是它没有考虑到总体的变异对“距离”远近的影响,显然一个变异程度大的总体可能与更多样品近些,既使它们的欧氏距离不一定最近;另外,欧氏距离受变量的量纲影响,这对多元数据的处理是不利的。为了克服这方面的不足,可用“马氏距离”的概念。2.马氏距离设Xi与Xj是来自均值向量为,协方差为∑=(>

5、0)的总体G中的p维样品,则两个样品间的马氏距离为(5.5)马氏距离又称为广义欧氏距离。显然,马氏距离与上述各种距离的主要不同就是它考虑了观测变量之间的相关性。如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵,则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。马氏距离还考虑了观测变量之间的变异性,不再受各指标量纲的影响。将原始数据作线性变换后,马氏距离不变。3.兰氏距离(5.6)它仅适用于一切Xij>0的情况,这个距离也可以克服各个指标之间量纲的影响。这是一个自身标准化的量,由于它对大的奇异值不敏感,它特别适合于高度偏倚的

6、数据。虽然这个距离有助于克服明氏距离的第一个缺点,但它也没有考虑指标之间的相关性。4.距离选择的原则一般说来,同一批数据采用不同的距离公式,会得到不同的分类结果。产生不同结果的原因,主要是由于不同的距离公式的侧重点和实际意义都有不同。因此我们在进行聚类分析时,应注意距离公式的选择。通常选择距离公式应注意遵循以下的基本原则:(1)要考虑所选择的距离公式在实际应用中有明确的意义。如欧氏距离就有非常明确的空间距离概念。马氏距离有消除量纲影响的作用。(2)要综合考虑对样本观测数据的预处理和将要采用的聚类分析方法。如在进行聚类分析之前已经对变量作了标准化处理,

7、则通常就可采用欧氏距离。(3)要考虑研究对象的特点和计算量的大小。样品间距离公式的选择是一个比较复杂且带有一定主观性的问题,我们应根据研究对象的特点不同做出具体分折。实际中,聚类分析前不妨试探性地多选择几个距离公式分别进行聚类,然后对聚类分析的结果进行对比分析,以确定最合适的距离测度方法。二、变量相似性的度量多元数据中的变量表现为向量形式,在几何上可用多维空间中的一个有向线段表示。在对多元数据进行分析时,相对于数据的大小,我们更多地对变量的变化趋势或方向感兴趣。因此,变量间的相似性,我们可以从它们的方向趋同性或“相关性”进行考察,从而得到“夹角余弦法

8、”和“相关系数”两种度量方法。1、夹角余弦两变量Xi与Xj看作p维空间的两个向量,这两个向量间的夹角余弦可用

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。