欢迎来到天天文库
浏览记录
ID:20931816
大小:315.50 KB
页数:7页
时间:2018-10-18
《高等数学常用公式大全》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、高数常用公式平方立方:三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A=Sin2A=2SinA•CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A=3sinA-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tana·ta
2、n(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb=2coscoscosa-cosb=-2sinsintana+tanb=积化和差sinasinb=-[cos(a+b)-cos(a-b)]cosacosb=[cos(a+b)+cos(a-b)]sinacosb=[sin(a+b)+sin(a-b)]cosasinb=[sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sinacos(-a)=cosasin(-a
3、)=cosacos(-a)=sinasin(+a)=cosacos(+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=万能公式sina=cosa=tana=其他非重点三角函数csc(a)=sec(a)=双曲函数sinh(a)=cosh(a)=tgh(a)=其它公式a•sina+b•cosa=×sin(a+c)[其中tanc=]a•sin(a)-b•cos(a)=×cos(a-c)[其中tan(c)=]1+sin(a)=(sin+cos)21-sin(a)=(sin-
4、cos)2公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数
5、值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+α)=cosαcos(+α)=-sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=cosαcos(-α)=sinαtan(-α)=cotαcot(-α)=tanαsin(+
6、α)=-cosαcos(+α)=sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=-cosαcos(-α)=-sinαtan(-α)=cotαcot(-α)=tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+B•sin(ωt+φ)=×sin特殊角的三角函数值:0π2π010-1010-10101不存在0不存在0不存在10不存在0不存在等价代换:(1)(2)(3)(4)(5)(6)(7)(8)基本求导公式:(1),是常数(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(1
7、2)(13)(14)(15)(16)基本积分公式:(1)(2) (3)(4) (5)(6)(7)(8)(9)(10)(11)(12)(13)或()(14)或()(15),(16),(17),(18),一些初等函数:两个重要极限:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1=;x2=(b2-4ac0)根与系数的关系:x1+x2=-,x1·x2=
此文档下载收益归作者所有