欢迎来到天天文库
浏览记录
ID:20916598
大小:24.50 KB
页数:3页
时间:2018-10-17
《统计学悖论(11)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、统计学悖论(11) M:有一个关于黑乌鸦的著名悖论,它说明罗尼哈特小姐遇到的问题并不是罕见的。甚至有些专家也还在力求搞清它。 M:如果看到有3—4只乌鸦是黑色的,那么说“所有乌鸦都是黑色的”,这条科学定律的证据是不充分的。如果看到上百万只乌鸦都是黑的,这条定律的证据就比较充分。 甲:嘎!嘎!我不是一只黑乌鸦。只要他们发现了我,他们就会知道他们的定律是错的。 M:一条黄色的毛毛虫起什么作用?它可不可以当作这条定律的一个例证呢? M:要回答这个问题,让我们首先把这条定律改成在逻辑上仍然等价的另一个形式吧,“凡是不黑的东西都不
2、是乌鸦。” 乙:嘿!我已经找到一个不黑的东西了,它肯定不是只乌鸦,所以它证实了这条定律:“凡是不黑的东西都不是乌鸦。”所以它必然也证实了等价的定律:“凡是乌鸦都是黑的。” M:很容易找到成千上万不黑的又不是乌鸦的东西。它们是否也证实了定律:“凡是乌鸦都是黑的。”? M:卡尔·亨普尔教授设计了这条著名的悖论,他确信一条酱紫色的奶牛实际上使“所有乌鸦都是黑色的”概率稍为增大了一点。其他哲学家不同意这一点。你的看法如何? 这是近来发现的在证实理论方面的很多悖论中最惹人头痛的一个。尼尔森·古德曼说道:“坐在屋里不用出去受风吹雨淋就可以
3、研究飞禽学这一前景是这样吸引人,使得我们知道其中必然有值得探讨的地方。” 问题是要把关键找出来。卡尔·亨普尔相信,一个不是乌鸦的客体不是黑的这件事实际上是证实了“所行乌鸦都是黑的”这个论断,不过只是在极微小的程度上得到证实。试想我们来做一个客体数量很小的假设检验,比如有10张扑克牌向下扑放在桌子上。我们假设所有黑牌都是黑桃。我们开始一张一张翻牌。显然,每当我们翻开一张黑桃时,我们就得到一个证实假设的例证。 现在,我们把这个假设用不同形式改述为:“所有不是黑桃的牌都是红的。”两次我们翻出的牌不是黑桃时,它是红的,这肯定也像前面一样证
4、实了我们的假设。确实,如果第一张牌是黑桃,其余9张都是红色的非黑桃牌,我们就知道我们的假设成立。 亨普尔说,当我们把上述过程用到乌鸦上,从不是乌鸦的客体不是黑的来证实我们的假设时,使人觉得别扭,其原因就在于地球上不是乌鸦的客体比起乌鸦来实在太多了,因而我们用上述说法来证实假设是不足取的。再则,如果我们环顾室内来找寻乌鸦,我们本已知道室内根本没有乌鸦,那么在这里找不到任何不黑的乌鸦是毫不足怪的。 要是我们还没有上述这种补充知识,那么当我们发现了一个不黑的不是乌鸦的东西时,从理论意义上讲,它就算作证明“所有乌鸦都是黑的”的一个例证了。
5、 亨普尔的反对者常要指出,按他这个理由,发现一条黄色的毛毛虫或一条酱紫色的奶牛肯定也是“所有乌鸦都是白的”这条“规律”的例证。那末,一个同样的事实怎么会同时证实“所有乌鸦那是黑的”和“所有乌鸦都是白的”的例证呢?关于亨普尔悖论的文章多不胜数;这个悖论在关于知识的证实方面的辩论中起着中心作用,而这正是后面的参考资料:韦斯利·萨尔蒙的论文所讨论的课题。[1][2][3][4][5][6][7][8][9][10][11][12]
此文档下载收益归作者所有