欢迎来到天天文库
浏览记录
ID:20866029
大小:262.72 KB
页数:10页
时间:2018-10-17
《基于多元统计分析的生产过程故障诊断研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、基于多元统计分析的生产过程故障诊断研宄一、主元分析简介传统的多元统计过程监测与控制方法(MultivariateSPM&C)非常适合用来分析二维稳态过程的数据矩阵,包括变量之间的线性关系。但由于在实际应用中外部条件并不都是理想的,因此需对基本多元统计方法作出改进,纵观近年來的研宄文献,主要有以下一些方法:1.多14主元分析(MPCA):MPCA可以用来分析从间歇生产或者半间歇生产过程中获得的多维数裾矩阵。通过一定的线性转换将多维数裾矩阵切割成多个二维子数据模块,然后按照新的排列顺序,转化为二维数据矩阵,再应用基本PCA方法进行诊断分析。2.多重或多数据块PCA(Hierach
2、iealormulti—bloekPCA):可以将大的原始数据矩阵分解成多个子数据矩阵或者数据块,使得建模过程数据信息的分析更加简便。3.动态PcA(DynamicPCA):能够实时监视巾于时滞变量的影响而不断增大的数据矩阵,实现抽取与时间关联的关系信息,以实现过程同步监测以及设计实时控制器。4.非线性PCA(NonlinearPCA):是从PCA基本方法中延伸出来的,非线性现象几乎存在于一切实际生产过程中,利用非线性PCA可以抽取过程变量间的非线性关系。5.PLS是基于推论模型(炙似于二级变量模型(SecondaryVriableModel)或者软测量传感器(SoftSen
3、sor))的用于在线质量控制的一种方法,主要是针对那些过程中有许多最终产品质量参数以及与生产率有关的变量,而这些变:W:—般都具有严重的时滞现象,并且难以直接测获得。6.自适应PCA能够通过指数滤波持续的更新模型参数(Wbld,1994),以达到自动调整诊断模型,实现故障诊断的准确性和实时性。在近年来的文献中,有关基于多元统计分析的过程监测与控制方法成功应用的案例有广泛的记载。在现实的生产过程,如冶金、橡胶、制药以及石化工业屮,多元统计分析主要的应用领域包括数据表现(模型)、数据压缩和信息抽取、正常过程的行为监控、非正常过程的监测及辨识(如故障诊断)以及在线推论控制等。主元分
4、析的数学原理主元分析(PCA)是由Pearson(1901)最早提出来的,Fisher和Maehenzie(1923)认为,主元分析在系统相应方差分析方面的用途比在系统建模方面的用途要大。Hoteinng(1933)对主元分析方法进行了改进,使其成为了目前被广泛应用的方法。主元分析(PCA)是一种较为成熟的多元统计监测方法。在化工生产中能够获取观测值的显式变量数量众多,且相互间又存在复杂的相关性,应用PCA的方法将显式变量作一定的线性转化产生数量较少的隐式变量,降低原始数裾空间的维数,再从新的隐式变量屮提取主要变化信息及特征。这样既保留了原有数据信息的特征,乂消除变量间的关联
5、、简化分析杂度,从新的数据空间中提取符合相应要求的主元数,同时也消除了部分的系统噪声干扰。主元分析的对象是样本点x变量类型的数据表。其目标是在力保数据信息丢失最少的情况下,对高维变量空间进行降维处理。假设数据矩阵x(m、n),m代表测量采样次数,n代表测S变y:个数,主元分析方法的数据压缩过程实质上是数据矩阵X协方差矩阵的谱分解过程。主元分析的对象是样本点x变量类型的数据表。其目标是在力保数据信息丢失最少的情况下,对高维变量空间进行降维处理。假设数据矩阵x(m、n),m代表测量采样次数,n代表测量变量基于多元统计分析的生产过程故障诊断研宄一、主元分析简介传统的多元统计过程监测
6、与控制方法(MultivariateSPM&C)非常适合用来分析二维稳态过程的数据矩阵,包括变量之间的线性关系。但由于在实际应用中外部条件并不都是理想的,因此需对基本多元统计方法作出改进,纵观近年來的研宄文献,主要有以下一些方法:1.多14主元分析(MPCA):MPCA可以用来分析从间歇生产或者半间歇生产过程中获得的多维数裾矩阵。通过一定的线性转换将多维数裾矩阵切割成多个二维子数据模块,然后按照新的排列顺序,转化为二维数据矩阵,再应用基本PCA方法进行诊断分析。2.多重或多数据块PCA(Hierachiealormulti—bloekPCA):可以将大的原始数据矩阵分解成多个
7、子数据矩阵或者数据块,使得建模过程数据信息的分析更加简便。3.动态PcA(DynamicPCA):能够实时监视巾于时滞变量的影响而不断增大的数据矩阵,实现抽取与时间关联的关系信息,以实现过程同步监测以及设计实时控制器。4.非线性PCA(NonlinearPCA):是从PCA基本方法中延伸出来的,非线性现象几乎存在于一切实际生产过程中,利用非线性PCA可以抽取过程变量间的非线性关系。5.PLS是基于推论模型(炙似于二级变量模型(SecondaryVriableModel)或者软测量传感器(SoftSens
此文档下载收益归作者所有