【复变函数】 史上最全ppt 上

【复变函数】 史上最全ppt 上

ID:20818507

大小:7.01 MB

页数:329页

时间:2018-10-16

【复变函数】 史上最全ppt  上_第1页
【复变函数】 史上最全ppt  上_第2页
【复变函数】 史上最全ppt  上_第3页
【复变函数】 史上最全ppt  上_第4页
【复变函数】 史上最全ppt  上_第5页
资源描述:

《【复变函数】 史上最全ppt 上》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1复变函数与积分变换(B)《复变函数》(四版)清华大学数学教研室编2013-2014学年第一学期教材22013年9月3日第一章复数与复变函数3对象复变函数(自变量为复数的函数)主要任务研究复变数之间的相互依赖关系,具体地就是复数域上的微积分主要内容复变函数的积分、级数、留数、共形映射、傅立叶变换和拉普拉斯变换等复数与复变函数、解析函数、4学习方法复变函数中许多概念、理论、和方法是实变函数在复数域内的推广和发展,它们之间有许多相似之处.但又有不同之处,在学习中要善于比较、区别、特别要注意复数域上特有的性质与结果5背 景十六世纪,在解代数方程时引进

2、复数为使负数开方有意义,需要扩大数系,使实数域扩大到复数域在十八世纪以前,对复数的概念及性质了解得不清楚,用它们进行计算又得到一些矛盾.在历史上长时期人们把复数看作不能接受的“虚数”直到十八世纪,J.D’Alembert(1717-1783)与L.Euler(1707-1783)等人逐步阐明了复数的几何意义和物理意义,澄清了复数的概念应用复数和复变函数研究了流体力学等方面的一些问题.复数被广泛承认接受,复变函数论顺利建立和发展.6十九世纪奠定复变函数的理论基础三位代表人物:A.L.Cauchy(1789-1866)K.Weierstrass(1

3、815-1897)分别应用积分和级数研究复变函数G.F.B.Riemann(1826-1866)研究复变函数的映照性质通过他们的努力,复变函数形成了非常系统的理论,且渗透到了数学的许多分支,同时,它在热力学,流体力学和电学等方面也得到了很多的应用.71.复数的概念2.代数运算3.共轭复数§1复数及其代数运算8一般,任意两个复数不能比较大小.1.复数的概念定义对任意两实数x、y,称z=x+iy或z=x+yi为复数.复数z的实部Re(z)=x;虚部Im(z)=y.(realpart)(imaginarypart)复数的模判断复数相等9定义z1=x1

4、+iy1与z2=x2+iy2的和、差、积和商为:z1±z2=(x1±x2)+i(y1±y2)z1z2=(x1+iy1)(x2+iy2)=(x1x2-y1y2)+i(x2y1+x1y2)2.代数运算四则运算10z1+z2=z2+z1;z1z2=z2z1;(z1+z2)+z3=z1+(z2+z3);z1(z2z3)=(z1z2)z3;z1(z2+z3)=z1z2+z1z3.运算规律复数的运算满足交换律、结合律、分配律.(与实数相同)即,11共轭复数的性质3.共轭复数定义若z=x+iy,称z=x-iy为z的共轭复数.(conjugate)12131

5、.点的表示2.向量表示法3.三角表示法4.指数表示法§2复数的表示方法141.点的表示点的表示:数z与点z同义.152.向量表示法oxy(z)P(x,y)xy称向量的长度为复数z=x+iy的模或绝对值;以正实轴为始边,以为终边的角的弧度数称为复数z=x+iy的辐角.(z≠0时)16辐角无穷多:Argz=θ=θ0+2kπ,k∈Z,把其中满足的θ0称为辐角Argz的主值,记作θ0=argz.z=0时,辐角不确定.计算argz(z≠0)的公式17当z落于一,四象限时,不变.当z落于第二象限时,加.当z落于第三象限时,减.18192021oxy(z)

6、z1z2z1+z2z2-z1由向量表示法知3.三角表示法4.指数表示法2223引进复数的几何表示,可将平面图形用复数方程(或不等式)表示;反之,也可由给定的复数方程(或不等式)来确定它所表示的平面图形.例1用复数方程表示:(1)过两点zj=xj+iyj(j=1,2)的直线;(2)中心在点(0,-1),半径为2的圆.oxy(z)Lz1z2z解(1)z=z1+t(z2-z1)(-∞

7、1.复数的乘积与商2.复数的乘幂3.复数的方根§3复数的乘幂与方根32定理1两个复数乘积的模等于它们的模相乘,两个复数乘积的辐角等于它们的辐角相加.证明设z1=r1(cosθ1+isinθ1)=r1eiθ1z2=r2(cosθ2+isinθ2)=r2eiθ2则z1z2=r1r2(cosθ1+isinθ1)(cosθ2+isinθ2)=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]=r1r2ei(θ1+θ2)1.乘积与商因此

8、z1z2

9、=r1r2,Arg(z1z2)=Argz1+Argz233几何意义将复数z1按逆时针方向旋转一个角度A

10、rgz2,再将其伸缩到

11、z2

12、倍.定理1可推广到n个复数的乘积.oxy(z)z1z2z234由于辅角的多值性,因此,该等式两端都是无穷多个数构成的两个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。