资源描述:
《椭圆题型总结(较难)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2017届数学补充材料每天都有好心情^_^椭圆题型总结一、焦点三角形1.设F1、F2是椭圆的左、右焦点,弦AB过F2,求的面积的最大值。(法一)解:如图,设,,根据椭圆的定义,,,又,在ΔAF2F1和ΔBF2F1中应用余弦定理,得,∴,,∴令,所以,∴在上是增函数∴当,即时,,故的面积的最大值为.(法二)解:设AB:x=my+1,与椭圆2x2+3y2=6联立,消x得(2m2+3)y2+4my-4=0∵AB过椭圆内定点F2,∴Δ恒大于0.设A(x1,y1),B(x2,y2),则Δ=48(m2+1)=
2、y1-y2
3、==令t=m2+1≥1,m2=t-1,则=,t
4、∈[1,+)f(t)=在t∈[1,+)上单调递增,且f(t)∈[9,+)∴t=1即m=0时,ΔABF1的面积的最大值为。注意:上述AB的设法:x=my+1,方程中的m相当于直线AB的斜率的倒数,但又包含斜率不存在的情况,即m=0的时候。在直线斜率不等于零时都可以这样设,往往可使消元过程简单化,而且避免了讨论。202017届数学补充材料每天都有好心情^_^2.如图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:(1)求点P的轨迹方程;(2)若,求点P的坐标.解:(1)由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆.因此半焦距c=2,
5、长半轴a=3,从而短半轴b=,所以椭圆的方程为(2)由得①因为不为椭圆长轴顶点,故P、M、N构成三角形.在△PMN中,②将①代入②,得故点P在以M、N为焦点,实轴长为的双曲线上.由(Ⅰ)知,点P的坐标又满足,所以由方程组解得即P点坐标为二、点差法定理在椭圆(>>0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.3.直线l经过点A(1,2),交椭圆于两点P1、P2,(1)若A是线段P1P2的中点,求l的方程;(2)求P1P2的中点的轨迹.202017届数学补充材料每天都有好心情^_^解:(1)设P1(x1,y1)、P2(x
6、2,y2),则…………*∵A(1,2)是线段P1P2的中点,∴x1+x2=2,y1+y2=4,∴,即。∴l的方程为,即2x+9y-20=0.(2)设P1P2的中点M(x,y),则x1+x2=2x,y1+y2=2y,代入*式,得,又直线l经过点A(1,2),∴,整理,得4x(x-1)+9y(y-2)=0,∴P1P2的中点的轨迹:。4.在直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点P和Q.(1)求的取值范围;(2)设椭圆与轴正半轴、轴正半轴的交点分别为A、B,是否存在常数,使得向量与共线?如果存在,求的取值范围;如果不存在,请说明理由.解:(1)直
7、线的方程为由得:直线与椭圆有两个不同的交点,>0.解之得:<或>.的取值范围是.(2)在椭圆中,焦点在轴上,,202017届数学补充材料每天都有好心情^_^设弦PQ的中点为,则由平行四边形法则可知:与共线,与共线.,从而由得:,由(1)可知时,直线与椭圆没有两个公共点,不存在符合题意的常数.三、最值问题5.已知P为椭圆上任意一点,M(m,0)(m∈R),求PM的最小值。目标:复习巩固定点与圆锥曲线上的点的连线段的最值问题。提示:设P(x,y),用距离公式表示出PM,利用二次函数思想求最小值。解:设P(x,y),PM====,x∈[-2,2],结合相应的二次
8、函数图像可得(1)<-2,即m<时,(PM)min=
9、m+2
10、;(2)-2≤≤2,即≤m≤时,(PM)min=;(3)>2,即m>时,(PM)min=
11、m-2
12、.说明:(1)类似的,亦可求出最大值;(2)椭圆上到椭圆中心最近的点是短轴端点,最小值为b,最远的点是长轴端点,最大值为a;(3)椭圆上到左焦点最近的点是长轴左端点,最小值为a-c,最远的点是长轴右端点,最大值为a+c;6.在椭圆求一点P,是它到直线l:x+2y+10=0的距离最小,并求最大最小值。目标:复习研究圆锥曲线上的点与直线的距离问题的一般处理方法。提示:(1)可等价转化为与直线l平行的椭圆
13、的切线与直线l之间的距离;(1)也可以用椭圆的参数方程。202017届数学补充材料每天都有好心情^_^解法一:设直线m:x+2y+m=0与椭圆相切,则,消去x,得8y2+4my+m2-4=0,Δ=0,解得m=.当m=时,直线与椭圆的切点P与直线l的距离最近,最近为=,此时点P的坐标是(,);当m=-时,直线与椭圆的切点P与直线l的距离最远,最远为=,此时点P的坐标是(,)。解法二:设椭圆上任意一点P(2cosθ,sinθ),θ∈[0,2)则P到直线l的距离为=∴当θ=时,P到直线l的距离最大,最大为此时点P的坐标是(,);当θ=时,P到直线l的距离最小,最
14、小为,此时点P的坐标是(,)。说明:在上述解法一中体现了“数形结合