欢迎来到天天文库
浏览记录
ID:20740085
大小:1.21 MB
页数:11页
时间:2018-10-15
《初一常用几何证明定理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、初一常用几何证明的定理总结对顶角相等:几何语言:∵∠1、∠2是对顶角∴∠1=∠2(对顶角相等)垂线:几何语言:正用反用:∵∠AOB=90°∵AB⊥CD∴AB⊥CD(垂直的定义)∴∠AOB=90°(垂直的定义)证明线平行的方法:1、平行公理如果两条直线都与第三条直线平行,那么,这两条直线也平行。简述为:平行于同一直线的两直线平行。几何语言叙述:如图:∵AB∥EF,CD∥EF∴AB∥CD(平行于同一直线的两直线平行。)2、同位角相等,两直线平行。几何语言叙述:如图:∵直线AB、CD被直线EF所截∠1=∠2∴AB∥CD(同位角相等,两直线平行。)3、内错角相等,两直线平行。几何语言叙述:如图:∵直
2、线AB、CD被直线EF所截,∠1=∠2∴AB∥CD(内错角相等,两直线平行。)4、同旁内角互补,两直线平行。几何语言叙述:如图:∵直线AB、CD被直线EF所截,∠1+∠2=180O∴AB∥CD(同旁内角互补,两直线平行。)5、垂直于同一直线的两直线平行。几何语言叙述:如图:∵直线a⊥c,b⊥c∴a∥b(垂直于同一直线的两直线平行。)平行线的性质:1、两直线平行,同位角相等。几何语言叙述:∵AB∥CD∴∠1=∠2(两直线平行,同位角相等。)2、两直线平行,内错角相等。几何语言叙述:如图:∵AB∥CD∴∠1=∠2(两直线平行,内错角相等。)3、两直线平行,同旁内角互补。几何语言叙述:如图:∵AB
3、∥CD∴∠1+∠2=180O(两直线平行,同旁内角互补。)证明角相等的其余常用方法:1、余角的性质:同角或等角的余角相等。例:∵如图∠AOB+∠BOC=90°∠BOC+∠COD=90°∴∠AOB=∠COD(同角的余角相等)2、补角的性质:同角或等角的补角相等。例:∵如图∠AOB+∠BOD=180°,∠AOC+∠COD=180°且∠BOD=∠AOC∴∠AOB=∠COD(同角的补角相等)三角形中三种重要线段:1、三角形的角平分线:几何语言叙述:∵如图BD是△ABC的角平分线∴∠ABD=∠CBD=∠ABC2、三角形的中线:几何语言叙述:∵如图BD是△ABC的中线∴AD=BD=AB3、三角形的高线:
4、几何语言叙述:∵如图AD是△ABC的高∴∠ADB=∠ADC=90°三角形的分类:三角形三边的关系:三角形两边之和大于第三边,两边之差小于第三边。如图:
5、AB-AC
6、7、∠A+∠B(三角形的一个外角等于和它不相邻的两内角之和)三角形内角和定理推论3:三角形的一个外角大于任何一个与它不相邻的内角。几何语言叙述:如图:∵∠ACD是△ABC的外角∴∠ACD>∠B(三角形的一个外角大于任何一个与它不相邻的内角)平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律:(1)x轴将坐标平面分为两部分,x轴上方的纵坐标为正数;x轴下方的点纵坐标为负数。即第一、二象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为正数;第三、四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为负数。反之,如果点P(a,b)在x轴上方,则b>0;如果P(a,b)在x轴下方,则b<0。(2)y轴将8、坐标平面分成两部分,y轴左侧的点的横坐标为负数;y轴右侧的点的横坐标为正数。即第二、三象限和x轴的负半轴上的点的横坐标为负数;第一、四象限和x轴正半轴上的点的横坐标为正数。(3)规定坐标原点的坐标为(0,0)(4)各个象限内的点的符号规律如下表:坐标符号点所在位置横坐标纵坐标第一象限++第二象限-+第三象限--第四象限+-上表反推也成立。如:若点P(a,b)在第四象限,则a>0,b<0(5)坐标轴上的点的符号规律:坐标符号点所在位置横坐标纵坐标X轴正半轴+0负半轴-0Y轴正半轴0+负半轴0-原点00定义能够完全重合(大小,形状都相等的三角形)的两个三角形称为全等三角形。 当两个三角形完全重9、合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。 (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。 (3)有公共边的,公共边一定是对应边。 (4)有公共角的,角一定是对应角。 (5))有对顶角的,对顶角一定是对应角。编辑本段判定公理1、三组对应边分别相等的两个三角形全等(简称S
7、∠A+∠B(三角形的一个外角等于和它不相邻的两内角之和)三角形内角和定理推论3:三角形的一个外角大于任何一个与它不相邻的内角。几何语言叙述:如图:∵∠ACD是△ABC的外角∴∠ACD>∠B(三角形的一个外角大于任何一个与它不相邻的内角)平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律:(1)x轴将坐标平面分为两部分,x轴上方的纵坐标为正数;x轴下方的点纵坐标为负数。即第一、二象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为正数;第三、四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为负数。反之,如果点P(a,b)在x轴上方,则b>0;如果P(a,b)在x轴下方,则b<0。(2)y轴将
8、坐标平面分成两部分,y轴左侧的点的横坐标为负数;y轴右侧的点的横坐标为正数。即第二、三象限和x轴的负半轴上的点的横坐标为负数;第一、四象限和x轴正半轴上的点的横坐标为正数。(3)规定坐标原点的坐标为(0,0)(4)各个象限内的点的符号规律如下表:坐标符号点所在位置横坐标纵坐标第一象限++第二象限-+第三象限--第四象限+-上表反推也成立。如:若点P(a,b)在第四象限,则a>0,b<0(5)坐标轴上的点的符号规律:坐标符号点所在位置横坐标纵坐标X轴正半轴+0负半轴-0Y轴正半轴0+负半轴0-原点00定义能够完全重合(大小,形状都相等的三角形)的两个三角形称为全等三角形。 当两个三角形完全重
9、合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。 (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。 (3)有公共边的,公共边一定是对应边。 (4)有公共角的,角一定是对应角。 (5))有对顶角的,对顶角一定是对应角。编辑本段判定公理1、三组对应边分别相等的两个三角形全等(简称S
此文档下载收益归作者所有