欢迎来到天天文库
浏览记录
ID:20729151
大小:190.50 KB
页数:4页
时间:2018-10-15
《二次函数的综合运用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第22课时二次函数的综合运用一、考点分析1、抛物线形问题2、二次函数与一次函数的综合3、二次函数与存在性问题4、二次函数与几何知识的的综合二、典例解析例1、(2008白银市)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).(1)点A的坐标是__________,点C的坐标是__________;(2)当t=秒或秒时,MN=AC;(3
2、)设△OMN的面积为S,求S与t的函数关系式;(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.例2、一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1日起的50天内,它的市场售价y1与上市时间x的关系可用图(a)的一条线段表示;它的种植成本y2与上市时间x的关系可用图(b)中的抛物线的一部分来表示.(1)求出图(a)中表示的市场售价y1与上市时间x的函数关系式.(2)求出图(b)中表示的种植成本y2与上市时间x的函数关系式.(3)假定市场售价减去种植成本为纯利润
3、,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)例3、(2008年西宁市)28.如图14,已知半径为1的与轴交于两点,为的切线,切点为,圆心的坐标为,二次函数的图象经过两点.(1)求二次函数的解析式;(2)求切线的函数解析式;(3)线段上是否存在一点,使得以为顶点的三角形与相似.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.图14yxOABMO1三、考点精练1.(2008年泰安市)在同一直角坐标系中,函数和(是常数,且)的图象可能是()xyOA.
4、xyOB.xyOC.xyOD.2、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA.O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA的任意平面上的抛物线如图l-2-36所示,建立平面直角坐标系(如图l-2-37),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是,请回答下列问题:(1)花形柱子OA的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?3、(2006年旅顺口区)已知边长为4的正方
5、形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.4、(08枣庄)如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B恰好落在x轴上,记为B′,折痕为CE,已知tan∠OB′C=.B′ABCEOxy(1)求B′点的坐标;(2)求折痕CE所在直线的解析式.5、如右图,抛物线经过点,与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是等腰三角形,试求点P的坐标.6、(2008乌鲁木齐).如图9,
6、在平面直角坐标系中,以点为圆心,2为半径作圆,交轴于两点,开口向下的抛物线经过点,且其顶点在上.(1)求的大小;(2)写出两点的坐标;(3)试确定此抛物线的解析式;BxyAO图9D(4)在该抛物线上是否存在一点,使线段与互相平分?若存在,求出点的坐标;若不存在,请说明理由.7、如图l-2-48,Rt△PMN中,∠P=90○,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(图l
7、-2-49)直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2,求y与x之间的函数关系式.8、如图11,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米(1)当t=4时,求S的值(2)当,求S与t的函数关系式,并求出S的最大值
8、图11
此文档下载收益归作者所有