欢迎来到天天文库
浏览记录
ID:20699269
大小:526.00 KB
页数:27页
时间:2018-10-15
《松原市宁江区2017届九年级上期末数学试卷含答案解析》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2016-2017学年吉林省松原市宁江区九年级(上)期末数学试卷 一、选择题(每小题3分,共12分)1.我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是( )A.B.C.D.2.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A.B.C.D.3.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )A.B.C.D.4.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、
2、BD,下列结论中不一定正确的是( )A.AE=BEB.=C.OE=DED.∠DBC=90°5.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x﹣2)2+3C.y=3(x+2)2﹣3D.y=3(x﹣2)2﹣36.若ab>0,则一次函数y=ax+b与反比例函数y=第27页(共27页)在同一坐标系数中的大致图象是( )A.B.C.D. 二、填空题(每小题3分,共24分)7.方程x2=2x的根为 .8.已知=3,则= .9.抛物线y
3、=(x﹣1)2﹣3的顶点坐标是 .10.如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为 .(杆的宽度忽略不计)11.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为 .12.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为 .13.如图,在平面直角坐标系中,点A是函数y=(k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C
4、、D在x轴上,且BC∥第27页(共27页)AD.若四边形ABCD的面积为3,则k值为 .14.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c=0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是: (填上序号即可) 三、解答题(一)(每小题5分,共20分)15.计算:(π﹣3.14)0﹣
5、sin60°﹣4
6、+()﹣1.16.解方程:x2﹣1=2(x+1).17.先化简:
7、•(x),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.18.某学校为了了解九年级学生“一份中内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中,选取2名同时跳绳,请你用列表或画树状图求恰好选中一男一女的概率是多少? 四、解答题(二)(每小题7分,共28分)19.△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.第27页(共27页)(1)求过点B′的反比例函数解析式;(
8、2)求线段CC′的长.20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE=4,连接EF交CD于G.若=,求AD的长.21.如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为 (用含m的式子表示);(2)求反比例函数的解析式.22.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南安边点A处,测得河的北岸边
9、点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向.回答下列问题:(1)∠CBA的度数为 .(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73.第27页(共27页) 五、解答题(三)(每小题10分,共20分)23.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.24.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部
10、是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值
此文档下载收益归作者所有