资源描述:
《苏科九(上)圆的期末复习检测试题(提高卷)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、苏科九(上)圆的期末复习检测试题(提高卷)一、精心选一选(本大题共10小题,每小题3分,共计30分)1、下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有()A.0个B.1个C.2个D.3个2、同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是()A.外离B.相切C.相交D.内含3、如图1,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()A.35°B.70°C.110°D.140°4、如
2、图2,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<55、如图3,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()ABCDE图4A.42°B.28°C.21°D.20°BAMO· 图1图2图36、如图4,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是()A、2cmB、4cmC、6cmD、8cm图57、如图5,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC
3、=1,分别连结AC、BD,则图中阴影部分的面积为()A.B.C.D.8、已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有()A、2个B、4个C、5个D、6个9、设⊙O的半径为2,圆心O到直线l的距离OP=m,且m使得关于x的方程有实数根,则直线l与⊙O的位置关系为()A、相离或相切B、相切或相交C、相离或相交D、无法确定AA1A2BCC2B1图6l10、如图6,把直角△ABC的斜边AC放在定直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B2C2的位置,设AB=
4、,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为()A、(+)πB、(+)πC、2πD、π二、细心填一填(本大题共6小题,每小4分,共计24分).11、(2006山西)某圆柱形网球筒,其底面直径是100cm,长为80cm,将七个这样的网球筒如图所示放置并包装侧面,则需________________的包装膜(不计接缝,π取3).12、(2006山西)如图7,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经助攻冲到B点。有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门。仅从射门角度考虑,应选
5、择________种射门方式.13、如果圆的内接正六边形的边长为6cm,则其外接圆的半径为.14、如图8,已知:在⊙O中弦AB、CD交于点M、AC、DB的延长线交于点N,则图中相似三角形有________对.15、(2006年北京)如图9,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.16、(原创)如图10,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分别记为S、S,若圆心到两弦的距离分别为2和3,则︱S-S︱=.ABCDMNO图8图9图10三、认真算一算、答一答(17~23题,每题8分,
6、24题10分,共计66分).ACBCABrLS图甲0.6图乙1.017、(2006年丽水)为了探究三角形的内切圆半径r与周长L、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O是△ABC的内切圆,切点分别为点D、E、F.(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长L和面积S.(结果精确到0.1厘米)(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与L、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?图甲图乙图丙ABCOGED18、(2006年成都)如图,以等腰三
7、角形的一腰为直径的⊙O交于点,交于点,连结,并过点作,垂足为.根据以上条件写出三个正确结论(除外)是:(1) ;(2) ;(3) .19、(2004年黄冈)如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面。问怎样才能截出直径最大的凳面,最大直径是多少厘米?20、(2005年山西)如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算
8、结果用π表示).21、如图,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.