5实际问题与一元二次方程(面积问题)

5实际问题与一元二次方程(面积问题)

ID:20631839

大小:756.50 KB

页数:32页

时间:2018-10-14

5实际问题与一元二次方程(面积问题)_第1页
5实际问题与一元二次方程(面积问题)_第2页
5实际问题与一元二次方程(面积问题)_第3页
5实际问题与一元二次方程(面积问题)_第4页
5实际问题与一元二次方程(面积问题)_第5页
资源描述:

《5实际问题与一元二次方程(面积问题)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、实际问题与一元二次方程(二)2010.9.20.复习:列方程解应用题有哪些步骤对于这些步骤,应通过解各种类型的问题,才能深刻体会与真正掌握列方程解应用题。上一节,我们学习了解决“平均增长(下降)率问题”,现在,我们要学习解决“面积、体积问题。实际问题与一元二次方程(二)面积、体积问题一、复习引入1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?2.正方形的面积公式是什么呢?长方形的面积公式又是什么?3.梯形的面积公式是什么?4.菱形的面积公式是什么?5.平行四边形的面积公式是什么?6.圆的面积公式是什么?(二)几何问题方法提示:1)主要集中在几何图形的面积问题

2、,这类问题的面积公式是等量关系;如果图形不规则应割或补成规则图形,找出各部分面积之间的关系,再运用规则图形的面积公式列出方程;2)与直角三角形有关的问题:直角三角形两直角边的平方和等于斜边的平方是这类问题的等量关系,即用勾股定理列方程。巩固练习:如图,一块长方形铁板,长是宽的2倍,如果在4个角上截去边长为5cm的小正方形,然后把四边折起来,做成一个没有盖的盒子,盒子的容积是3000cm,求铁板的长和宽。复习一元二次方程练习:(探究性题)一块矩形耕地大小尺寸如图(1)所示,要在这块土地上沿东西和南北方向分别挖2条和4条小渠,如果小渠的宽相等,而且要保证余下的耕地面积为960

3、0,那么水渠应挖多宽?16264(2)分析:这类问题的特点是,挖渠所占面积只与挖渠的条数和渠道的宽度有关,而与渠道的位置无关,为了研究问题方便可分别把东西和南北方向的渠道移动到一起(最好靠一边),如图(2)所示。那么剩余可耕的长方形土地的长为(162-2x)m,宽为(64-4x)m解:设水渠的宽为xm,列方程得:(162—2x)(64-4x)=9600,解得=1,=96(不合题意,舍去)。答:水渠的宽为1m.16264(1)要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,

4、左、右边衬等宽,应如何设计四周边衬的宽度?2721分析:这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7解法一:设正中央的矩形两边分别为9xcm,7xcm依题意得解得故上下边衬的宽度为:左右边衬的宽度为:探究3要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?2721分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7解法二:设上下边衬的宽为9xcm,左右边衬宽

5、为7xcm依题意得解方程得(以下同学们自己完成)方程的哪个根合乎实际意义?为什么?例1.(2004年,镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.解:(1)方案1:长为米,宽为7米;方案2:长为16米,宽为4米;方案3:长=宽=8米;注:本题

6、方案有无数种(2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.由题意得长方形长与宽的和为16米.设长方形花圃的长为x米,则宽为(16-x)米.x(16-x)=63+2,x2-16x+65=0,∴此方程无解.∴在周长不变的情况下,长方形花圃的面积不能增加2平方米1、用20cm长的铁丝能否折成面积为30cm2的矩形,若能够,求它的长与宽;若不能,请说明理由.练习:解:设这个矩形的长为xcm,则宽为cm,即x2-10x+30=0这里a=1,b=-10,c=30,∴此题无解.∴用20cm长的铁丝不能折成面积为30cm2的矩形.例2:某校为了美化校园,准备在一块长

7、32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.补充例题与练习(1)(2)(1)解:(1)如图,设道路的宽为x米,则化简得,其中的x=25超出了原矩形的宽,应舍去.∴图(1)中道路的宽为1米.则横向的路面面积为,分析:此题的相等关系是矩形面积减去道路面积等于540米2。解法一、如图,设道路的宽为x米,32x米2纵向的路面面积为。20x米2注意:这两个面积的重

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。