高校数学分析课程中融入数学文化的教学研究

高校数学分析课程中融入数学文化的教学研究

ID:20616234

大小:58.00 KB

页数:9页

时间:2018-10-14

高校数学分析课程中融入数学文化的教学研究_第1页
高校数学分析课程中融入数学文化的教学研究_第2页
高校数学分析课程中融入数学文化的教学研究_第3页
高校数学分析课程中融入数学文化的教学研究_第4页
高校数学分析课程中融入数学文化的教学研究_第5页
资源描述:

《高校数学分析课程中融入数学文化的教学研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高校数学分析课程中融入数学文化的教学研究摘要:在高校数学分析课程的教学中,融入数学文化,使学生可以更好地掌握数学分析的知识体系和思维方法。文章首先叙述了数学文化的内涵,之后论述在教学屮融入数学文化的意义,最后以教学案例的方式,从四个不同的角度阐述在数学分析课程中融入数学文化的方法。关键词:教学改革;数学分析;数学文化;教学案例中图分类号:G642.0文献标志码:A文章编号:1674-9324(2017)14-0063-03高校数学分析课程,作为数学、统计学、金融学、保险精算学等专业一门重要的专业基础课,

2、是学生后续课程的基础,对于培养学生良好的专业素养非常重要。进行高校数学分析课程的教学改革,在教学屮融入数学文化,既可使学生体会到数学的独特文化内涵,又可激发学生的学习兴趣,更好地掌握数学分析的知识体系和思维方法,更为高效地完成学习。一、数学文化的内涵所谓数学文化,狭义的是指数学的思想、精神、方法、观点、语言以及它们的形成和发展。广义指除这些之外,还包含数学史、数学家、数学美、数学教育、数学与人文的交叉、数学与各种文化的关系[1]。数学文化是一个开放、多元、动态的系统。研究学者视角的多元化,导致数学文化的

3、界定并不一致。WilderR.L.[2]指出数学家拥有的文化内含一个共享的带有数学特征的部分;BishopA.J.[3]认为数学文化是文化视角下的数学,既包含Wilder精英主义的数学亚文化,即数学知识背后的隐性成分或观念性成分,也包含人类文化中的数学成分。张奠宙[4]认为数学知识不是数学文化的内容,背后隐性存在的观念冰是;王宪昌[5]认为数学文化是数学现象背后的文化传统流变的文化分析;孙宏安[6]认为数学文化是人类适应数学活动的环境与创造数学活动自身及其成果的综合。二、在数学分析课程中,融入数学文化的

4、意义1.数学分析理论体系完整,逻辑思维严密,课程具有无穷魅力。在这些有趣的数学知识和数学现象之外,数学分析还蕴含着数学思维,蕴含着“有限与无限”“变屮有不变”等数学哲学,有着微积分发展屮丰富的历史故事,有着数学先驱勇攀科学高峰的精祌。数学分析课程实质上也是在传播一种文化,一种有趣的数学文化。在教学过程中应当有效地体现其文化价值。2.著名数学教育家张奠宙先生在《数学文化的一些新视角》[7]中指出:“数学文化必须走进课堂,在实际数学教学中使得学生在学习数学的过程真正受到文化感染,产生文化共鸣,体会数学的文化

5、品位和世俗的人情味。”在传统的数学分析教学中,只是局限于其知识成分,抽取了理性的定理、公式、结构等骨架,而舍去了其中数学文化、实践创新等丰富血肉。这种“茧氏”的课程文化丢失了数学的思想、精神,也丢失了课程的许多精华和其屮的乐趣。数学分析课程不但具有科学的价值,而且还具有文化的价值。数学文化有其独立思考、勇于批判的理性精祌;有其浓厚的文化积淀,以及踏实细微的人文精神;有其在生产生活中的实际应用性;有其相对稳定性和延续性,有其世界性等[8]。在教学过程中,从教学内容、教学方式、评价方式等诸方面体现数学的文化

6、价值,将数学文化渗透到数学分析教学的全过程之中。1.数学分析课程理论性强,其逻辑推理的严密严谨性,需要教师和学生投入很多的精力。而且,作为大学入学的第一门数学专业课,学生需从初等数学向高等数学转变,学习和适应不同的思考和解决问题的角度与方法,这也进一步增加了教学和学习的难度。教学中在严谨推导的同时,融入数学文化,一方让学生了解数学文化,另一方面,增强教学的趣味性,提高学生学习的兴趣,使学生可以更好地汲取知识。三、在数学分析课程屮融入数学文化的方法数学文化的渗透。学生理解与感悟数学是一种自然渗透、逐步深化

7、的过程。不可将知识孤立、零散地分割开,最终只让学生学到了一个个孤立的知识点,却无法学到纵横联系的知识结构与网络,这也无法使学生最终获得数学理性观的升华直至感悟。在将数学文化融入数学分析教学的过程中,需要教师与学生一起感受数学文化的内涵、领会数学文化的真谛。更需要教师在深刻而丰富的数学文化观的引导下,引发课堂教学行为的改变,从而提高教师的教学质量和学生的学习水平。1.以数学文化作为课程新知识的引入点。以有趣的数学现象、数学史料等作为数学分析课程新知识引入时的切入点。教学案例:以“无穷悖论”这一“奇怪”的数

8、学现象,作为数项级数收敛和发散,以及条件收敛时数项级数的加法交换律和结合律不成立这两个知识点的引子。捷克哲学家Bolzano在《无穷悖论》(1781-1848)中提到一个例子:1和-1交替出现的级数,即1-1+1-1+1-1+…。为了计算这个级数,通过三种不同的方法会得出三种不同的答案。方法一:一开始就进行相邻两数的归纳计算,则有1-1+1-1+1-卜.=(1-1)+(1-1)+(1-1)+…=0+0+0+…=0,答案是0。方法二:?牡诙?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。