数学分析课程中数学建模思想的融入研究

数学分析课程中数学建模思想的融入研究

ID:26857125

大小:56.50 KB

页数:9页

时间:2018-11-29

数学分析课程中数学建模思想的融入研究_第1页
数学分析课程中数学建模思想的融入研究_第2页
数学分析课程中数学建模思想的融入研究_第3页
数学分析课程中数学建模思想的融入研究_第4页
数学分析课程中数学建模思想的融入研究_第5页
资源描述:

《数学分析课程中数学建模思想的融入研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、数学分析课程中数学建模思想的融入研究  数学分析是巩固新授知识,形成技能技巧,培养良好的思维品质,下面是小编搜集整理的一篇探究数学建模思想的论文范文,欢迎阅读参考。  数学分析课程是数学类数学与应用数学、信息与计算科学、统计学等专业的一门主干基础课程。学好数学分析课程是学好其他一些后继课程如微分方程、复变函数、实变函数、泛函分析与概率论与数理统计等课程的必备基础。同时数学分析课程也是以更高层次、更深入地理解中学数学教材所必需的基础。通过数学分析课程基本知识的传授与相关习题、实例的训练,使学生养成严谨务实的学风,逻辑思维能力,分析和解决问题的能力有进一步提高。特别是注重学生发现问题、分析问题、

2、解决问题的数学思想的培养。力争为把学生培养成既有严谨的逻辑思维能力、又有科学创新精神的人才打下良好的基础。因此该课程的教学好坏在一定程度上关系到学生数学思维与数学素质的培养与提高。  1、数学建模及其思想内涵  模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物,集中反映了原型中人们需要的那一部分特征。  数学模型(MathematicalModel)是关于部分现实世界和为一种特殊目的而做的一个抽象的、简化的结构。  具体来说,数学模型就是为了某种目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达

3、式。  数学建模(MathematicalModeling)简单理解就是建立数学模型的全过程,也就是在深入调查研究,了解实际问题,做出合理的简化假设,分析其内在规律等工作的基础上,获得数学模型,然后通过求解、计算得到的模型结果来解释实际问题,并接受实际的检验。数学建模的一般步骤如图1所示,全过程如图2所示。  2、融数学建模思想于数学分析课程中的作用与意义  作为数学类最重要的基础课之一,数学科学的逻辑性和历史继承性决定了数学分析在数学科学中举足轻重的地位,数学的许多新思想,新应用都源于这一坚实的基础。数学分析由于对微积分在理论体系上的严格化和精确化,确立了在数学科学中的基础地位,并运用于自

4、然科学的各个领域。同时,数学研究的主体是经过抽象后的对象,数学的思考方式有鲜明的特色,包括抽象化、逻辑推理、最优分析、符号运算等,这些知识和能力的培养需要通过系统、扎实而严格的基础教育来实现,数学分析课程正是其中最重要的一个环节。  数学分析的教学存在着诸多问题。例如,对于刚进入大学的新生,不太适应大学教师的教学方法与模式;学生认为数学分析课程过于抽象,与实际生活距离较远,对该课程缺乏学习热情和动力[1].融数学建模思想方法于数学分析课程的教学中,配合适量的数学模型内容进行教学,有利于学生对基础理论知识的掌握,提高学生分析问题、解决问题的数学实践应用能力,同时可以激发学生学习数学的积极性与热

5、情,提高自身素质和素养。可以起到以下作用:激发学生的参与探索的兴趣;增强联系数学理论与实际运用的能力;促进数学分析教学的改革;提高大学生的数学素质。  3、融数学建模思想于数学分析教学  数学分析教学中要求掌握的很多内容可以看作是数学建模的模型求解阶段,比如函数的可微性、定积分、重积分、曲线积分、曲面积分的计算等[2].因此,在实际教学过程中,应适当结合数学模型的建模全过程来进行讲解,使学生了解问题的来龙去脉,逐步的进行分析、求解等,使学生在学习的过程中系统地了解与掌握分析问题、解决问题的思想与方法,以提高学生学习数学的兴趣,更好的培养学生应用数学的能力。  3.1融数学建模思想于概念、定义

6、教学之中  从恰当的案例中引入概念是将数学建模思想融入数学分析课程教学的重要形式[3].数学分析课程中有很多非常重要的概念,如函数、极限、连续、导数、微分、定积分、重积分、级数等,这些概念都是从一些具体问题出发,抓住其在数量关系等方面的共同本质和特性而加以概括、抽象出来的。在一些重要概念教学过程中,对概念的引入,任课教师要精心设计,这样在知识传授过程中,让学生学会数学思想、方法,领会数学的精神实质,知晓知识点的来龙去脉,使学生明白那些看似枯燥无味的概念不是头脑中所固有的,而是有着很强的现实背景,有其特有的物理原型和表象的。  例如,对于定积分概念,初学时学生倍感这一概念很抽象。其实,这一概念

7、是在很多具体原型的基础之上抽象而得到的,如求曲边梯形的面积、旋转体的体积等。在教学过程之中可以将求曲边梯形面积作为原型,借助不变代变的思想,通过分划→近似→求和→取极限4个步骤,最终将无限细分所得的近似值的极限定义为曲边梯形面积的值,从而这个几何问题得到解决[4].通过这一数学模型来进行教学,可以使学生更好地学习并理解这一概念,比把概念用抽象、不易理解的数学符号直接呈现给学生要生

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。