二次函数【复习题】(1课时)

二次函数【复习题】(1课时)

ID:20565548

大小:1.37 MB

页数:7页

时间:2018-10-13

二次函数【复习题】(1课时)_第1页
二次函数【复习题】(1课时)_第2页
二次函数【复习题】(1课时)_第3页
二次函数【复习题】(1课时)_第4页
二次函数【复习题】(1课时)_第5页
资源描述:

《二次函数【复习题】(1课时)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、二次函数【复习题】(4课时)一、例题:【例1】二次函数y=ax2+bx2+c的图象如图所示,则a0,b0,c0(填“>”或“<”=.)【例1】二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象大致是图中的()【例3】在同一坐标系中,函数y=ax2+bx与y=的图象大致是图中的()【例4】如图所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,左面的一条抛物线可以用y=0.0225x2+0.9x+10表示,而且左右两条抛物线关于y轴对称,你能写出右面钢缆的表达式吗?【例5】图中各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax

2、+c的大致图象,有且只有一个是正确的,正确的是()【例6】抛物线y=ax2+bx+c如图所示,则它关于y轴对称的抛物线的表达式是.【例7】已知二次函数y=(m-2)x2+(m+3)x+m+2的图象过点(0,5).(1)求m的值,并写出二次函数的表达式;(2)求出二次函数图象的顶点坐标、对称轴.【例8】启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的利益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(万元)时,产品的年销售量将是原销售量的y倍,且y=-+x+,如果把利润看作是销售总额减去成本费和广告费.(1)试写出年利润S(万元)与广告费

3、x(万元)的函数表达式,并计算广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?(2)把(1)中的最大利润留出3万元作广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:项目ABCDEF每股(万元)526468收益(万元)0.550.40.60.50.91如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问有几种符合要求的投资方式?写出每种投资方式所选的项目.【例9】已知抛物线y=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)的顶点是A,抛物线y=x2-2x+1的顶点是B(如图).(1)判断点A是否在抛物线y=

4、x2-2x+1上,为什么?(2)如果抛物线y=a(x-t-1)2+t2经过点B.①求a的值;②这条抛物线与x轴的两个交点和它的顶点A能否成直角三角形?若能,求出t的值;若不能,请说明理由.【例10】如图,E、F分别是边长为4的正方形ABCD的边BC、CD上的点,CE=1,CF=,直线FE交AB的延长线于G,过线段FG上的一个动点H,作HM⊥AG于M.设HM=x,矩形AMHN的面积为y.(1)求y与x之间的函数表达式,(2)当x为何值时,矩形AMHN的面积最大,最大面积是多少?【例11】已知点A(-1,-1)在抛物线y=(k2-1)x2-2(k-2)x+1上.(1)求抛物线的对称轴;(2)若点

5、B与A点关于抛物线的对称轴对称,问是否存在与抛物线只交于一点B的直线?如果存在,求符合条件的直线;如果不存在,说明理由.【例12】如图,A、B是直线ι上的两点,AB=4cm,过ι外一点C作CD∥ι,射线BC与ι所成的锐角∠1=60°,线段BC=2cm,动点P、Q分别从B、C同时出发,P以每秒1cm的速度,沿由B向C的方向运动;Q以每秒2cm的速度,沿由C向D的方向运动.设P、Q运动的时间为t秒,当t>2时,PA交CD于E.(1)用含t的代数式分别表示CE和QE的长;(2)求△APQ的面积S与t的函数表达式;(3)当QE恰好平分△APQ的面积时,QE的长是多少厘米?【例13】如图所示,有一边长

6、为5cm的正方形ABCD和等腰三角形PQR,PQ=PR=5cm,PR=8cm,点B、C、Q、R在同一直线ι上.当CQ两点重合时,等腰△PQR以1cm/秒的速度沿直线ι按箭头所示方向开始匀速运动,t秒后,正方形ABCD与等腰△PQR重合部分的面积为Scm2.解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;【例14】如图2-4-16所示,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在圆形水面中心,OA=1.25米.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线的路线落下.为使水流形状较为漂亮,要求设计成水流在与高OA距离为1米处达

7、到距水面最大高度2.25米.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水不致落到池外?(2)若水池喷出的抛物线形状如(1)相同,水池的半径为3.5米,要使水流不致落到池外,此时水流最大高度应达多少米?(精确到0.1米,提示:可建立如下坐标系:以OA所在的直线为y轴,过点O垂直于OA的直线为x轴,点O为原点)【例15】某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产的产品全部

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。