欢迎来到天天文库
浏览记录
ID:2041553
大小:188.50 KB
页数:2页
时间:2017-11-14
《排列(二)导学稿(教师版)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、宁都县宁师中学宁师中学“自主参与学习法”数学学科导学稿(教师版)编号主编人:罗建平审稿人:定稿日:协编人:使用人:高二理科学生课题:1.2.2排列(北师大选修2—3第一章)(第二课时)学习目标:掌握解排列问题的常用方法学习过程一、课前复习1.排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同2.排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,
2、用符号表示注意区别排列和排列数的不同:“一个排列”是指:从个不同元素中,任取个元素按照一定的顺序排成一列,不是数;“排列数”是指从个不同元素中,任取()个元素的所有排列的个数,是一个数所以符号只表示排列数,而不表示具体的排列3.排列数公式及其推导:()全排列数:(叫做n的阶乘)二、学习新知(一)情景导入:照相中相邻和不相邻问题(二)自主合作探究问题1:五名同学站在一起照相,甲乙要求相邻有多少种不同站法?问题2:五名同学站在一起照相,甲乙要求不相邻有多少种不同站法?解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直
3、接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析 符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中
4、任取一个,有A51种选法,中间两位数从其余的8个数字中选取2个有A82种选法,根据乘法原理知共有A21A51A82个;一类是以3、5、7为尾数的共有A31A41A82个.宁都县宁师中学解 符合条件的奇数共有A21A51A82+A31A41A82=1232个.答 在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙
5、的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析 (1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有A21种;再确定乙的排法,有A41种;最后确定其他人的排法,有A44种.因为这是分步问题,所以用乘法原理,有A21·A41·A44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有A55种不同排法.然后甲、乙两人之间再排队,有A22种排法.因为是分步问题,应当用乘法原
6、理,所以有A55·A22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有A66种排法.(5)采用“插入法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有A43种排法,女生有A33种排法.因为是分步问题,应当用乘法原理,所以共有A43·A33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有A55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有A41种排法,排尾从除乙以外的4人中选一人有A41种排法,中间4
7、个位置无限制有A44种排法,因为是分步问题,应用乘法原理,所以共有A41A41A44种排法.解 (1)A66=720(种)(2)A21·A41·A44=2×4×24=192(种)(3)A55·A22=120×2=240(种)(4)A66=360(种)(5)A43·A33=24×6=144(种)(6)A55+A41A41A44=120+4×4×24=504(种)或法二:(淘汰法)A66-2A55+A
此文档下载收益归作者所有