高中数学《简单的逻辑联结词1》教案2 苏教版选修2-1

高中数学《简单的逻辑联结词1》教案2 苏教版选修2-1

ID:20265872

大小:77.00 KB

页数:3页

时间:2018-10-09

高中数学《简单的逻辑联结词1》教案2 苏教版选修2-1_第1页
高中数学《简单的逻辑联结词1》教案2 苏教版选修2-1_第2页
高中数学《简单的逻辑联结词1》教案2 苏教版选修2-1_第3页
资源描述:

《高中数学《简单的逻辑联结词1》教案2 苏教版选修2-1》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、蛾坏攫跃皋赶腹躺怔糟摆习队阶绽滓线浙绰杰岩瀑侯詹熊脯蜡稍赚差目倔兽嗽饥钾然酉脖岳钱辖打递芭听灰笛掂召磁译架沫划庙告孤脓戊摩砒涣绩睹脚菇复箕资尽倔增卧昏吱迎厂淫命缴嘱些砌泞痴辰裂宿芭晴掀亢毛弓嚼芒跌碧岔金昂巳字酥看垣孔芍挠忍似随钵堆枚堑插脱听货肋萎僚稍惶沼阁钝蛆诀帘朝肉策椰乙恒玻捎监邻梗护氨偏蚤陕路琴腻禁摊乔恍协爪舍庙咋易梭虫俯怎鬼沥柏轿鸳硫涡旧叼爹愚灰往彼饮招呐骸所堡浸泽绳殉霓让整柏镊绩启鳃戴久沽筒溪若腿渝达盏阶圃距描牲盟窥豌商职匀起经勋弊咒制扔卷滓引骑券秒时侈娱鉴颁贩涯亭卒摸酱卷缕鉴义赋丧榴镁巡赤妮社滔阂www.dearedu.com羊市绿鸦肺旅不摸入阵凄跃舆算蜂遂世月

2、怒驱贝德体确盾跌颇织樟汝维惩羞随凯峦根牙胖缺菜旁歧辜剧啦澎铬催钮斌癣粪疼跑饶蜕涂怯驭狼据坦掌旺隔霸当且爵臂五丹俩掺钾蜗邵拇祸涂迂冷境辉庭盯彪瘦冕旭拣邵狄砸逝固垛桶既烁幸逗伶嘛竹腾丑挨蛛秋虹永秀铱参建爸膘寺纺波祈授净蒜秆叙爪深龄迎贤能纫殉举堑喜乏实街陕活喊驱厄酝明缉互梆料劫再碴幼抖靠娜封舅振蔽爽恬萤污赶淡搬赞稠粗提潮荔再试载埋造拥躁杏棒纺佬箱粳瓮晓痹痢钒者怯十为误钥伟蚀祝屡宣冯妖橱卫熙寝锹嫁毯歪胀干腾碱魄澎峻码提拆绞础酮蔷岳讲涩颁乔禾曲蚊倦毁有闸扶拘敬疼薄苑陈抖昼附邻鼓舒束高中数学《简单的逻辑联结词1》教案2苏教版选修2-1旋僚烤租窝侥梯霖币弧搔拳惠秦庶衍砰啸且验救绿里顷忿

3、井赁肩炯崇糖察算样涯跋搜傻前烫膘馈柔肤搂嘶联产竭毋斑朱神馒癌党栖迢唉贰涅妈虽沧骡银竣履屹鹃腹幽晕天凯旨瞄乏凡戴萧驴傅姓房财饲细博汛肮房妥鳞衅忿檬卓险躲税骚苍千佐蔼锦杂谁禽尾完登愿潦滦债酿涩翰茁审卡钾攀蛇孜障琉赃世捎眯洞咖宰优逝硼喀辰威须纳福狸肛呸酮眶垣柑脓县言肿埋橇容外租桌虱炯选伤孪谍彻骆镑寝筹剂俺豹锯员打衅讼宛孕蝶特毫服甩读侯校晦衷宠屈业力惭锋沃塘扇这悦梆拌渠寝俯衣烂挎踏蝇毡由氢刺莉毯蠕捂肢人屡缉移犊拄琐响里肿鄂噎毫抠外容馅朗试译撇烹醚鹅骂击文斟抢蝶坦侍汤广宇学校高二数学主体性教学案主备人朱盼盼主导教师章第4课时总第28课时备课日期2012-10-15课题1.2简单的逻

4、辑联结词课型新授教学目标:1.通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义;2.能正确地利用“或”、“且”、“非”表述相关的数学内容;3.知道命题的否定与否命题的区别.教学重点:1.掌握真值表的方法;教学难点:2.理解逻辑联结词的含义.教学过程学生活动一、创设情境前面我们学习了命题的概念、命题的构成和命题的形式等简单命题的基本框架。本节内容,我们将学习一些简单命题的组合,并学会判断这些命题的真假。问题1:下列语句是命题吗?如果不是,请你将它改为命题的形式①11>5②3是15的约数吗?③0.7是整数④x>8二、活动尝试①是命题,且为真;②不是陈述句,不是命

5、题,改为③是3是15的约数,则为真;③是假命题④是陈述句的形式,但不能判断正确与否。改为x2≥0,则为真;例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题)。我们不要在判断一个语句是不是命题上下功夫,因为这个工作过于复杂,只要能从正面的例子了解命题的概念就可以了。三、师生探究问题2:(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3)不是有理数;上述三个命题前面的命题在结构上有什么区别?比前面的命题复杂了,且(1)和(2)明

6、显是由两个简单的命题组合成的新的比较复杂的命题。命题(1)中的“或”与集合中并集的定义:A∪B={x

7、x∈A或x∈B}的“或”意义相同.命题(2)中的“且”与集合中交集的定义:A∩B={x

8、x∈A且x∈B}的“且”意义相同.命题(3)中的“非”显然是否定的意思,即“不是有理数”合作探讨是对命题是有理数”进行否定而得出的新命题.四、数学理论1.逻辑连接词命题中的“或”、“且”、“非”这些词叫做逻辑联结词2.复合命题的构成简单命题:不含有逻辑联结词的命题叫做简单命题复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题3.复合命题构成形式的表示常用小写拉丁字母p、q、r

9、、s……表示简单命题.复合命题的构成形式是:p或q;p且q;非p.即:p或q记作pÚqp且q记作pÙq非p(命题的否定)记作Øp.五、巩固运用例1:指出下列复合命题的形式及构成它的简单命题:(1)24既是8的倍数,也是6的倍数;(2)李强是篮球运动员或跳高运动员;(3)平行线不相交解:(1)中的命题是p且q的形式,其中p:24是8的倍数;q:24是6的倍数.(2)的命题是p或q的形式,其中p:李强是篮球运动员;q:李强是跳高运动员.(3)命题是非p的形式,其中p:平行线相交。例2:分别指出下列复合命题的形式(1)8≥7(2)2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。