必修三几何概型课件

必修三几何概型课件

ID:20072733

大小:473.50 KB

页数:15页

时间:2018-10-09

必修三几何概型课件_第1页
必修三几何概型课件_第2页
必修三几何概型课件_第3页
必修三几何概型课件_第4页
必修三几何概型课件_第5页
资源描述:

《必修三几何概型课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、几何概型问题:图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?事实上,甲获胜的概率与字母B所在扇形区域的圆弧的长度有关,而与字母B所在区域的位置无关.因为转转盘时,指针指向圆弧上哪一点都是等可能的.不管这些区域是相邻,还是不相邻,甲获胜的概率是不变的.在几何概型中,事件A的概率的计算公式如下:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.P(A)

2、=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)例1某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间不多于10分钟的概率.解:记“等待的时间不多于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6即“等待报时的时间不超过10分钟”的概率为1/6.【例2】两根相距8m的木杆上系一根拉直绳子,并在绳子上挂一盏灯,求灯与两端距离都大于3m的概率.解:记“灯与两端距离都大于3m”为事件A,由于绳长8m,当挂灯位置介于中间2m时,事件A发生,于是练习:有一根长

3、度为3m的绳子,拉直后在任意位置剪断,求剪得的两段的长度都不小于1m的概率?例3.取一个边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.2a数学应用例4.在装有5升纯净水的容器中放入一个病毒,现从中随机取出1升水,那么这1升水中含有病毒的概率是多少?例6假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?解:以横坐标X表示报纸送到时间,以纵坐标Y表示父亲离家时间建立平面直角坐标系,由于随机试验落在方形区域内任何一点是等可能的,所

4、以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即时间A发生,所以练习:(会面问题)甲、乙二人约定在0点到5点之间在某地会面,先到者等一个小时后即离去,设二人在这段时间内的各时刻到达是等可能的,且二人互不影响。求二人能会面的概率。解:以X,Y分别表示甲、乙二人到达的时刻,于是即点M落在图中的阴影部分.所有的点构成一个正方形,即有无穷多个结果.由于每人在任一时刻到达都是等可能的,所以落在正方形内各点是等可能的..M(X,Y)y54321012345x二人会面的条件是:012345yx54321y=x+1y=x-1记“两人会面”为事件A【例4】在1L高产小麦

5、种子中混入了一粒带麦锈病的种子,从中随机取出10mL,含有麦锈病种子的概率是多少?5.有一杯1升的水,其中含有1个大肠杆菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.练一练:课堂小结1.古典概型与几何概型的区别.相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型的概率公式.3.几何概型问题的概率的求解.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。