资源描述:
《空间向量及其运算(四)共线与共面分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、空间向量(四)康易制作1例1例2复习引入空间向量基本定理课外补充练习2lAPB34得证.为什么?5类比平面向量的基本定理,在空间中应有一个什么结论?NOCM6AO然后证唯一性DCB证明思路:先证存在E推论注:空间任意三个不共面向量都可以构成空间的一个基底.如:7推论:设点O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数对x、y、z使OABCP例1例2例38答案练习例1平行六面体中,点MC=2AM,A1N=2ND,设AB=a,AD=b,AA1=c,试用a,b,c表示MN.分析:要
2、用a,b,c表示MN,只要结合图形,充分运用空间向量加法和数乘的运算律即可.ABCDA1B1D1C1MN9解:ABCDA1B1D1C1MN连AN,则MN=MA+ANMA=-AC=-(a+b)1313AN=AD+DN=AD-ND=(2b+c)13=(-a+b+c)13∴MN=MA+AN例1平行六面体中,点MC=2AM,A1N=2ND,设AB=a,AD=b,AA1=c,试用a,b,c表示MN.10练习.空间四边形OABC中,OA=a,OB=b,OC=c点M在OA上,且OM=2MA,N为BC的中点,则M
3、N=().OABCMN(A)a-b+c122312(B)-a+b+c122312(C)a+b-c122312(D)a+b-c122323例311(1)答案(2)答案例2(课本例)如图,已知平行四边形ABCD,从平面AC外一点O引向量,,,,求证:⑴四点E、F、G、H共面;⑵平面EG//平面AC.12例2(课本例)已知ABCD,从平面AC外一点O引向量求证:①四点E、F、G、H共面;②平面AC//平面EG.证明:∵四边形ABCD为①∴(﹡)(﹡)代入所以E、F、G、H共面。13例2已知ABCD,从平
4、面AC外一点O引向量求证:①四点E、F、G、H共面;②平面AC//平面EG。证明:由面面平行判定定理的推论得:②由①知141.对于空间任意一点O,下列命题正确的是:(A)若 ,则P、A、B共线(B)若 ,则P是AB的中点(C)若 ,则P、A、B不共线(D)若 ,则P、A、B共线2.已知点M在平面ABC内,并且对空间任意一点O,,则x的值为()151.下列说明正确的是:(A)在平面内共线的向量在空间不一定共线(B)在空间共线的向量在平面内不一定共线(C)在平面
5、内共线的向量在空间一定不共线(D)在空间共线的向量在平面内一定共线2.下列说法正确的是:(A)平面内的任意两个向量都共线(B)空间的任意三个向量都不共面(C)空间的任意两个向量都共面(D)空间的任意三个向量都共面16补充练习:已知空间四边形OABC,对角线OB、AC,M和N分别是OA、BC的中点,点G在MN上,且使MG=2GN,试用基底表示向量COABMNG解:在△OMG中,17