欢迎来到天天文库
浏览记录
ID:1988738
大小:42.00 KB
页数:7页
时间:2017-11-14
《6制6上4单元信息窗3教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、圆的面积教学内容:《义务教育课程标准实验教科书·数学》(青岛版)六年级上册第62—64页。教材分析:把未知的问题转化为已知的问题是常用的思想方法,而“化曲为直”是推导圆面积公式的基本思想,教材注重这些思想方法的渗透,引导学生用这个思想来推导圆的面积计算公式。教材创设了一个神舟五号飞船回收降落范围的实际情境,从而引导学生提出一个问题神舟五号飞船预先设定的降落范围有多大?帮助学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,并引发研究圆面积的兴趣。教学目标:1.理解圆面积计算公式的推导。让学生利用已有的知识,运用转化的思考方法,推导出圆面积的计算公式。培养学生逻辑
2、推理能力。2.初步运用圆面积计算公式进行圆面积的计算。3.通过圆面的剪拼,培养学生操作、观察、分析的能力,渗透极限思想。教学重点:圆面积的剪拼及圆面积计算公式的推导。教学难点:极限思想的渗透与公式推导。教学准备:圆形纸片、剪刀、多媒体课件等。教学过程:第一课时一、创设情境,提出问题1、(出示情境图)教师谈话:同学们,我国是世界上第三个掌握航天器回收技术的国家。“神州”五号飞船预先设定的降落范围是半径10千米的圆,实际降落在半径5千米的范围之内,根据这些信息,你能提出什么数学问题?2、学生提出问题,教师板书。神舟五号飞船预先设定的降落范围有多大?[设计意图]:创设学生感兴趣
3、的情境,激发了学生学习的兴趣,引出圆的面积的概念,同时让学生感受学习圆的面积的计算方法是解决实际问题的需要,产生我要学的欲望。二、合作探索,解决问题1、圆的面积谈话:求神舟五号飞船预先设定的降落范围有多大也就是求什么?根据学生的回答,教师总结,也就是求圆的面积。(学生说后教师总结)2、如何求圆的面积谈话:同学们回忆以前三角形、平行四边形、梯形等面积是怎样求的?圆的面积可以怎样求呢?根据学生的回答,教师总结可以把圆转化成已经学过的图形来研究。[设计意图]:“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,“怎么求圆的面
4、积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。3、尝试探究求圆的面积。(教师课前给学生提供了学具,学生开始分组研究圆的面积解决方法。)(1)谈话交流:你们是怎样研究圆的面积的计算方法的?学生以小组为单位交流。(在尝试探究后,估计学生出现了两种情况:一种是
5、通过折叠把圆分成4个扇形;另一种是把圆剪成四个扇形后再拼成一个近似于平形四边形的图形。当学生把两种情况在全班展示后,教师有计划地逐一贴出两种方法得到的图形,即:一个扇形,一个由4个扇形拼成的近似于平行四边形的图形。)[设计意图]通过第一次探究,学生会产生两种很有价值的思路。即通过折一折,把圆转化成近似的三角形;通过剪拼把圆转化成近似的平行四边形。教师设计了“你们发现这两种方法的共同点了吗”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。(2)交流再探。教师谈话:如何让扇形的面积更接近于三角形呢?引导学生进一步折叠,这样就让学生再一次进行小组
6、合作探究。(3)再次交流。学生第二次探究后,再一次全班交流。将圆折叠成8等份,其中的一份比较接近三角形了;用8等份拼出来的图形比较接近平行四边形了。在此基础上,教师继续引导学生,如果再继续分,分出的每一个小扇形与三角形会怎样?拼出的图形又会怎样?引导学生继续折。[设计意图]学生沿着自主探究出来的思路继续研究时,一方面,从直觉上认为这样继续折下去或继续剪拼下去得到的图形一定会越来越像“三角形”或“平行四边形”,但最终能不能说就是“三角形”或“平行四边形”了呢?“怎样更像”进行追问,同时又引导学生在操作的基础上进行想象,再充分利用课件的优势,弥补操作与想象的不足,让学生真切地
7、看到了“自己想象的过程”,充分地体验了“极限思想”。(4)再次探究。学生再次动手折、拼,根据学生的回答教师及时板书。(5)课件展示及时用课件展示出把圆平均分成32等份、64等份,128等份,每一份的图形。让学生感受到分的份数越多,所得到的小扇形就越接近于三角形。再运用课件将剪拼的小扇形重新组合,由16等份——32等份——64等份——128等份……让学生清楚地看到分的份数越多,拼成的近似的平形四边形就慢慢的越来越接近于长方形,这样,圆的面积就可以通过求这个长方形的面积得到解决。[设计意图]在第二次探究中,学生主要是借助学具进行动
此文档下载收益归作者所有