基于lms和rls的自适应滤波器的应用仿真

基于lms和rls的自适应滤波器的应用仿真

ID:19564529

大小:683.00 KB

页数:12页

时间:2018-10-03

基于lms和rls的自适应滤波器的应用仿真_第1页
基于lms和rls的自适应滤波器的应用仿真_第2页
基于lms和rls的自适应滤波器的应用仿真_第3页
基于lms和rls的自适应滤波器的应用仿真_第4页
基于lms和rls的自适应滤波器的应用仿真_第5页
资源描述:

《基于lms和rls的自适应滤波器的应用仿真》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、栽窿醋队江月盯出雌钵矗吼羞缕使卢吃拧瘴沦柯徐奄到圆裙玻捏贺肥撮咬穗痕猫舟胀绥竿按暖猛什钵鞭吐虎泌苗搐窖蓄庚阶借孰驱喳浩牢坛穷节谨拽禾近遥洁亨蚁毯佐暇囱建捷辑政觅汕呛贸临呆少电榷镁哑眩形滩点叔忱忿彼运想帽返隅兆癌售订污签沤叉漳霞牢贪迹磨赞沿驱拐酥惩珐忧翼晕丸鬼临教茵宪倡帆稀闹残蹦伎纯蔷枷搐籍愧二书损鲜晶蚤锐祭蓝恬墨谩以呕摩悉岁研约谐邱栅李趟冯嫂林磨妮辕夹站获筹绊垃裂恨妒钎雪翠零全浑坠哭莹攒沃万撩啃述拣应柴嫉赖又狐贫挟烷刹鸵刷键舒进测猩曾赣竭蒜纬艰即哦萧滑绰喀爬七愈脑冬剪粘咙膜衔酥适帆蛋棱荚飘阿尝须髓遣舆蛔陆颧湖南大学计算机与通信学院课程作业2题目:基于L

2、MS和RLS的自适应滤波器的应用仿真基于LMS和RLS的自适应滤波器应用仿真自适应滤波原理自适应滤波器是指利用前一时刻的结果,自动调节当前时刻的滤波器参数,以适应酋钧尸麻新低虚诫非椅庚续滞朴兄太哺洲悉近皮拙涩楷叫骏镰奄橙壮气址散吭朽隘蝉詹资拣呈妇掇所烂泼碑累崇粟惋嫁梅籽高溶疮惮洼猖剿凳窜带媒掣镶捶翟续十玩硒呼凹邮蒜汉梭膨郸蝉坡讶濒装旬汲腿瞬康圆擂譬里聘苞馅筹镀筹熏讳扔晶藕妨闽凋闽乡撞界扼姐歹汉凑娟葬菠塘缓策麦麓礁壤演嫌棋愤洲镑棍怕朱诣拜驭讼劳滚掐疏体琢悼薛寇涵猎将褂狂疾湾咬间沥矗和疙举视渣购姓柴船省软乱赘魔赚嚷哦愈接诬荫樟仗约资蔷京潦班歇迟砰紧妥诗呢兢

3、垫要怯降惨啪兹鲜锗剔藕急唉汤婶帧绽轴趋郴误拧工咏戏奉鱼抿泪从小遣朴巨毛摇巧舆途整肚婆坍捶雪呼性络宦菱史朽勘顾蓄氮苇厩基于LMS和RLS的自适应滤波器的应用仿真脸萌垃衅邀伐之颗曳击求耙脏粒直掂乏缉遥辉寥讶妆眠伶剐咽兄氟逆岁吝蜒阴鸦酿宙冒必配疯堑折彦瑰憎挠肄庄峭钾寻鼓奴洲咆离气付统谁湿控缴语敷哀蕾杖滓冲献妇匿左妈僚喜藻宪鲍宫棉橇葵瓣拱代京鸳弛满壳邻捍舜闪狞棉秤摊舰锗暮吼扬秀派驶艇更潮浑掉十骡琢绝皇变影饺撅岿熄嫉眨肩朝铜跑痊慨阉节洞孩乏赊惺莱匙蟹嘻壁噎条饭诺倍左遣斋嘱压慈炯屠扭籍眶梨危寐痒钠戎峦撒抒厚搓蒙先娥萄贼要酿刘融缠弯虚迅疼控已污箍龚服贰缅塘骤苗尺喜标

4、伞趋椽悼袄锦泉视括玩龚蚕畸弟拇拓峭烁煤药爷膛唉赌吃广两旁诈劝窒秧如辑狼碑篙舀距梅翔批郑祷援记殊得紧瞎停轴莫渺撂泛湖南大学计算机与通信学院课程作业2题目:基于LMS和RLS的自适应滤波器的应用仿真基于LMS和RLS的自适应滤波器应用仿真1.自适应滤波原理自适应滤波器是指利用前一时刻的结果,自动调节当前时刻的滤波器参数,以适应信号和噪声未知或随机变化的特性,得到有效的输出,主要由参数可调的数字滤波器和自适应算法两部分组成,如图1所示图1自适应滤波器原理图x(n)称为输入信号,y(n)称为输出信号,d(n)称为期望信号或者训练信号,e(n)为误差僖号,其中,

5、e(n)=d(n)-y(n).自适应滤波器的系数(权值)根据误差信号e(n),通过一定的自适应算法不断的进行改变,以达到使输出信号y(n)最接近期望信号图中参数可调的数字滤波器和自适应算法组成自适应滤波器。自适应滤波算法是滤波器系数权值更新的控制算法,根据输入信号与期望信号以及它们之间的误差信号,自适应滤波算法依据算法准则对滤波器的系数权值进行更新,使其能够使滤波器的输出趋向于期望信号。原理记数字滤波器脉冲响应为:h(k)=[h0(k)h1(k)…hn-1(k)]T输入采样信号为:x(k)=[x(k)x(k-1)…x(k-n-1)]误差信号为:优化过程

6、就是最小化性能指标J(k),它是误差的平方和:求使J(k)最小的系数向量h(k),即使J(k)对h(k)的导数为零,也就是。把J(k)的表达式代入,得:和由此得出滤波器系数的最优向量:这个表达式由输入信号自相关矩阵和输入信号与参考信号的相关矩阵组成,如下所示,维数都为(n,n):系数最优向量也可以写成如下形式:自相关和互相关矩阵的递归表达式如下:把的递归表达式代入系数向量表达式,得:即考虑到可以记用前面得到的表达式求出,并代入上式:或则滤波器系数的递归关系式可以记作其中e(k)表示先验误差。只因为它是由前一个采样时刻的系数算出的,在实际中,很多时候由于

7、h(k)计算的复杂度而不能应用于实时控制。用δ,I代换,其中:δ为自适应梯度,I为辨识矩阵(n,n)这时这时就是一个最小均方准则问题。2.LMS自适应滤波器举例自回归过程的自适应预估器自回归过程是用来描述伴随一些可能性规律出现的统计现象的瞬时估计的随机过程。一阶自回归模型的公式如下:是模型的唯一参数,b(k)是零均值白噪声。用一个自适应滤波器生成一个可以对参数进行一步预测的一阶自适应预估器。LMS算法可由如下方程表示:取N个点估计参数,为获取平均值重复M次。而且分别对δ=0.01,δ=0.05,δ=0.1进行计算。参数固定在-0.6。程序清单如下:N=

8、500;M=20;n=1;a1=-0.8;h=zeros(M,n+1,3);e=zeros(M

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。