欢迎来到天天文库
浏览记录
ID:19539862
大小:1.02 MB
页数:14页
时间:2018-10-03
《中考数学专题复习教学案--综合型问题(附答案)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、综合型问题类型之一代数类型的综合题代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法等.解代数综合题要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.例1.(·安徽省)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾。一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必
2、须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。⑴若二分队在营地不休息,问二分队几小时能赶到A镇?⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。1.【解析】本题是一道包含着分类思想的应用综合应用题。解题前先认真阅读弄清题意,把握好时间信息,二分队在营地不休息,几小时能赶到A镇,途中考虑到在塌方地点的停留,解题时不能忽视;在考虑图像时,同样也要分
3、不同的情况去研究。【答案】解:(1)若二分队在营地不休息,则a=0,速度为4千米/时,行至塌方处需(小时)因为一分队到塌方处并打通道路需要(小时),故二分队在塌方处需停留0.5小时,所以二分队在营地不休息赶到A镇需2.5+0.5+=8(小时)(2)一分队赶到A镇共需+1=7(小时)(Ⅰ)若二分队在塌方处需停留,则后20千米需与一分队同行,故4+a=5,即a=1,这与二分队在塌方处停留矛盾,舍去;(Ⅱ)若二分队在塌方处不停留,则(4+a)(7-a)=30,即a2-3a+2=0,,解得a1=1,a2=2均符合题意。答:二分队应在营地休息1小时或2小时。
4、(其他解法只要合理即给分)(3)合理的图像为(b)、(d)图像(b)表明二分队在营地休息时间过长(2<a≤3),后于一分队赶到A镇;图像(d)表明二分队在营地休息时间恰当(1<a≤2),先于一分队赶到A镇。同步测试:1.(•沈阳市)一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往与A处相距636千米的B地,下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与之间的变化规律,说明选择这种函数的理由
5、,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达C处,求此时油箱内余油多少升?(3)在(2)的前提下,C处前方18千米的D处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B地.(货车在D处加油过程中的时间和路程忽略不计)类型之二几何类型的综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新
6、能力. 解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的.例2.(·龙岩市)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(-2,4),试求MC的长及直线DC的解析式.【解析】此题考查圆的切线的判定方法及一次函数解析式的判定,(1)切线的判定要从定义上去判定:过半径的外端,且垂直于半径的直线为圆的切线,所以此题要连接OM
7、,然后证明OM⊥DC,这里平行线对角的转化起到了关键的作用;(2)MC的长借助于勾股定理建立方程而求出,要求直线DC的解析式需要再求出点C的坐标根据MC的长即可以求出点C的坐标(AA,0),从而求出直线DC的解析式.【答案】(1)答:直线DC与⊙O相切于点M.证明如下:连OM,∵DO∥MB,∴∠1=∠2,∠3=∠4.∵OB=OM,∴∠1=∠3.∴∠2=∠4.在△DAO与△DMO中,∴△DAO≌△DMO.∴∠OMD=∠OAD.由于FA⊥x轴于点A,∴∠OAD=90°.∴∠OMD=90°.即OM⊥DC.∴DC切⊙O于M.(2)解:由D(-2,4)知OA
8、=2(即⊙O的半径),AD=4.由(1)知DM=AD=4,由△OMC∽△DAC,知AA=AA=AA=AA,∴AC=2MC.
此文档下载收益归作者所有