欢迎来到天天文库
浏览记录
ID:19483073
大小:788.50 KB
页数:16页
时间:2018-10-02
《辽宁省沈阳市郊联体2017-2018学年高一上学期期末考试数学A卷试题+Word版含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考资源网(ks5u.com)您身边的高考专家www.ks5u.com2017-2018学年度上学期沈阳市郊联体期末考试高一试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合()A.B.C.D.【答案】A【解析】∵,∴故选:A2.已知空间两点,,则两点之间的距离是()A.B.6C.36D.【答案】B【解析】∵,,∴,故选:B3.幂函数的图像经过点,则的值等于()A.4B.C.D.【答案】D【解析】设幂函数为,又图象过点,∴,∴∴,∴,故选:D4.若直线和直线平行,则()-1
2、6-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家A.-2B.-2或3C.3D.不存在【答案】C【解析】∵直线和直线平行,∴,解得:经检验:两直线重合,两直线平行,故选:C5.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为()A.B.3C.12D.36【答案】B【解析】根据题意,设圆台的上、下底面的半径分别为r、R,设圆锥的母线长为L,截得小圆锥的母线长为l,∵圆台的上、下底面互相平行∴,可得L=4l∵圆台的母线长9,可得L﹣l=9∴=9,解得L=12,∴截去
3、的圆锥的母线长为12-9=3故选:B6.一个水平放置的平面图形的斜二测直观图是直角梯形(如图所示),,,,则这个平面图形的面积为()A.B.C.D.【答案】B【解析】在直观图中,∵∠ABC=45°,AB=AD=1,DC⊥BC∴AD=1,BC=1+,∴原来的平面图形上底长为1,下底为1+,高为2,-16-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家∴平面图形的面积为×2=2+.故选:B.7.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则【答案】D【解析】试题
4、分析:,,故选D.考点:点线面的位置关系.视频8.光线沿着直线射到直线上,经反射后沿着直线射出,则有()A.B.C.D.【答案】D【解析】在直线y=﹣3x+b上任意取一点A(1,b﹣3),则点A关于直线x+y=0的对称点B(﹣b+3,﹣1)在直线y=ax+2上,故有﹣1=a(﹣b+3)+2,即﹣1=﹣ab+3a+2,∴ab=3a+3,结合所给的选项,故选:D.9.过点作圆的切线,所得切线方程为()A.和B.和C.和D.和【答案】C【解析】由圆(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,当过P的切线斜率不存在时,直线x=2满足题意;当过P的切线斜率
5、存在时,设为k,由P坐标为(2,3),可得切线方程为y﹣3=k(x﹣2),即kx﹣y+3﹣2k=0,-16-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家∴圆心到切线的距离d=r,即,解得:k=,此时切线的方程为y﹣3=(x﹣2),即4x﹣3y+4=0,综上,圆的切线方程为和.故选:C.10.已知某几何体的三视图如图所示,三视图是边长为的等腰三角形和边长为的正方形,则该几何体的体积为()A.B.C.D.【答案】A【解析】根据几何体的三视图,得;该几何体是棱长为的正方体中一三棱锥P﹣ABC,如图所示;∴该三棱锥的体积为××12×1
6、=.故选:A.-16-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.11.已知三棱锥中,,,,,,则三棱锥的外接球的表面积为()A.B.C.D.【答案】A【解析】如图:∵AD=2,AB=1,BD=,满足AD2+AB2=SD2∴AD⊥AB,又AD⊥BC,BC∩AB=B,∴AD⊥平面ABC,∵AB=BC=
7、1,AC=,∴AB⊥BC,∴BC⊥平面DAB,∴CD是三棱锥的外接球的直径,∵AD=2,AC=,∴CD=,∴三棱锥的外接球的表面积为4π=6π.故选:A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求
此文档下载收益归作者所有