欢迎来到天天文库
浏览记录
ID:18629749
大小:90.50 KB
页数:6页
时间:2018-09-20
《新课程理念下中考数学命题趋势及教学理念》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、新课程理念下中考数学命题趋势及教学理念江西省安福县城关中学曹经富从近几年中考数学试卷上看,试题内容更侧重于加强与社会实际和学生生活的联系,注重考查学生在具体情境中运用所学知识分析和解决问题的能力,注重考查学生的动手操作与实践能力。强调“知识的形成、应用过程与问题方法的解决”、“情感态度与价值观”等在教学过程中的渗透,体现“以人为本”的原则。努力实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。 为此,数学教学和复习应遵循的基本理念: 一、立足于数学的基础知识、基本能力、核心内
2、容的巩固和提高。 新课标的基本理念是:人人学有价值的数学,“人人都获得必需的数学,不同的人在数学上得到不同的发展。”中考命题将以新课标理念为依据,兼顾教学大纲的要求,因此教学要立足于课本,从教科书中寻找中考题的“影子”。尽管近年来中考数学有许多新题型,但所占分值比例较大的仍然是传统的基本问题。多数试题取材于教科书,试题的构成是在教科书中的例题、练习题、习题的基础上通过类比、加工改造、加强条件或减弱条件、延伸或扩展而成的。 例1:有一道题“先化简再求值:,其中的值。”小玲做题时把“”错抄成“”,但她的计算结果
3、也是正确的。请你解释这是怎么回事? 评析:代数中的化简求值问题是《数学课程标准》所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面。以往我们大多以直接考查运算技能的掌握情况作为基本命题思路,但本题却以考查对运算原理的理解作为命题的重心,一改“化简求值”类型的命题方式,以学生日常学习中抄错数而计算结果正确的现象为背景来引出问题,给人以耳目一新的感觉,不仅没有削弱对运算技能的考查,还隐藏了问题的解决思路,较好地考查了学生对运算原理的理解和运用。答案:经过化简后可得:原式,∵,∴错抄后结果不变。
4、二、关注于学生的知识技能和生活实际,考查学生学用结合的能力。 《新课程标准》特别强调数学背景的现实性和“数学化”。以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。练习题的设计要符合学生年龄特点和心理特征,适合学生的认知水平,既要贴近生活、联系实际,又要靠近课本,使学生有兴趣、有能力去尝试解决生活中的数学问题。诱发学生的求知欲,鼓励学生独立思考,并学会用数学的思维方式去观察、分析社会,从而解决日常生活中的实际问题。教学中要坚持由浅
5、入深、循序渐进、逐步提高的原则,这会给学生带来新鲜感和亲近感,它有利于扭转“背定义、套公式、记题型、对模式”的死板僵化的学习方法,促使学生生动活泼、主动地学习,使学生的实践能力得到锻炼。 例2.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1 所有评委所给分的平均数. 方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数. 方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数.
6、为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图: (1)分别按上述4个方案计算这个同学演讲的最后得分; (2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分. 评析:本题所创设的问题情境让学生深感亲切而熟悉,考查学生在具体情境中灵活运用代数知识去分析、解决实际问题的能力,使学生体会到日常生活中隐含着丰富多彩的数学知识,学的是“有价值的数学”。从而要求学生时刻关注生活.用数学的眼光观察生活,从生活中发现数学,理论联系实际,多收集生活
7、中的数学素材,并将所学的数学知识真正运用到解决实际问题中去。 例3:一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B、F、C、D在同一条直线上。 (1)求证AB⊥ED; (2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明。 评析:本题将几何证明融入到剪纸活动中,从学生熟悉的矩形、三角形引入,由学生自觉地运用数学知识去观察,去发现,去创造。让学生在剪、拼等操作中去发现几何结论,较好地体现了新课程理念。(2)题结论开放,而且结论丰富,学生可以从不同
8、的角度去进行探索,得到不同的结果。全等的三角形有:Rt△ABC≌Rt△DBP;Rt△APN≌Rt△DCN;Rt△DEF≌Rt△DBP;Rt△EPM≌Rt△BFM等。 三、注重对知识的形成过程和学生“学习过程”的考查。 新课标明确指出:“评价的主要目的是为了全面了解学生的学习历程”。考试评价既要关注学生“双基”的掌握情况,更要关注学生在学习过程中的情感与体验;既要关注学生学习的结果,更要关注学生在学习过程中的变化
此文档下载收益归作者所有