考研数学高数典型题型 (16)

考研数学高数典型题型 (16)

ID:18577062

大小:1.40 MB

页数:9页

时间:2018-09-19

考研数学高数典型题型 (16)_第1页
考研数学高数典型题型 (16)_第2页
考研数学高数典型题型 (16)_第3页
考研数学高数典型题型 (16)_第4页
考研数学高数典型题型 (16)_第5页
资源描述:

《考研数学高数典型题型 (16)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、考研数学高数典型题型一、函数、极限与连续  求分段函数的复合函数;  求极限或已知极限确定原式中的常数;  讨论函数的连续性,判断间断点的类型;  无穷小阶的比较;  讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。  二、一元函数微分学  求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;  利用洛比达法则求不定式极限;  讨论函数极值,方程的根,证明函数不等式;  利用罗尔定理、拉格朗日中值定理、柯西中值定理和

2、泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;  几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;  利用导数研究函数性态和描绘函数图形,求曲线渐近线。  三、一元函数积分学  计算题:计算不定积分、定积分及广义积分;  关于变上限积分的题:如求导、求极限等;  有关积分中值定理和积分性质的证明题;  定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;  综

3、合性试题。  四、向量代数和空间解析几何  计算题:求向量的数量积,向量积及混合积;  求直线方程,平面方程;  判定平面与直线间平行、垂直的关系,求夹角;  建立旋转面的方程;  与多元函数微分学在几何上的应用或与线性代数相关联的题目。  五、多元函数的微分学  判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;  求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;  求二元、三元函数的方向导数和梯度;  求曲面的切平面和法线,求空间曲线的切线与法平

4、面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;  多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。  六、多元函数的积分学  二重、三重积分在各种坐标下的计算,累次积分交换次序;  第一型曲线积分、曲面积分计算;  第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;  第二型(对坐标)曲面积分的计算,高斯公式及其应用;  梯度、散度、

5、旋度的综合计算;  重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。  七、无穷级数  判定数项级数的收敛、发散、绝对收敛、条件收敛;  求幂级数的收敛半径,收敛域;  求幂级数的和函数或求数项级数的和;  将函数展开为幂级数(包括写出收敛域);  将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);  综合证明题。  八、微分方程  求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,

6、有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;  求解可降阶方程;  求线性常系数齐次和非齐次方程的特解或通解;  根据实际问题或给定的条件建立微分方程并求解;  综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。2014考研[微博]的复习已进入了关键的冲刺阶段,对于公共课的数学复习来说,采取积极的心态、掌握适合自己的复习方法恰当的复习方法及逐渐强化应试技巧,能在最后40多天里快速提

7、高成绩,接下来是太奇考研小编为考生整理分享的2014考研数学高数六大必考题型,供考生复习参考。  1.求极限  无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时考生需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极

8、限手段达到目的,须引起注意!  2.利用中值定理证明等式或不等式,利用函数单调性证明不等式  证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。  3.一元函数求导数,多元函数求偏导数  求

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。