孙彦玲“说课”教案

孙彦玲“说课”教案

ID:18529429

大小:53.00 KB

页数:5页

时间:2018-09-18

孙彦玲“说课”教案_第1页
孙彦玲“说课”教案_第2页
孙彦玲“说课”教案_第3页
孙彦玲“说课”教案_第4页
孙彦玲“说课”教案_第5页
资源描述:

《孙彦玲“说课”教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、长春师范学院数学学院说课教案05级三班姓名:孙彦玲学号:0507140343等比数列的前n项和一、教材分析(一)、教材内容的地位和作用《等比数列前n项和公式》是高中数学二年级第二学期第十三章第五节内容。教学对象为高二学生,教学课时为2课时。本节课为第一课时。在此之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和、数列极限打下基础。本节课既是本章的重点,同时也是教材的重点。从高中数学的整体内容来看,《数列与数学归纳法

2、》这一章是高中数学的重要内容之一,在整个高中数学领域里占据着重要地位,也起着作用性的作用。首先:数列有着广泛的实际应用。例如产品的规格设计、储蓄、分期付款的有关计算等。其次:数列有着承前启后的作用。数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。再次:数列也是培养提高学生思维能力的好题材。学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。(二)、教学目标1、知识目标:理解等比数列前n项和公式的推导

3、方法,掌握等比数列前n项和公式及应用。2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。3、情感目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。(三)、教学重点、难点本节的教学重点是等比数列前n项和公式及应用。教学难点是等比数列前n项和公式的推导。二、教法、学法分析教法:本节课将采用“多媒体优化组合—激励—发现”式教学模式进行教学。该模式能够将教学过程中的各要素,如教师、学生、教材、教法等进行积极的整合,

4、使其融为一体,创造最佳的教学氛围。主要包括启发式讲解、互动式讨论、研究式探索、反馈式评价。学法:根据二期课改的精神,转变学生的学习方式也是本次课改的重要内容,数学作为基础教育的核心学科之一,转变学生的数学学习方式,变学生被动接受式学习为主动参与式学习,不仅有利于提高学生的整体数学素养,也有利于促进学生整体学习方式的转变。在课堂结构上我根据学生的认知层次,设计了(1)创设情景(2)观察归纳(3)讨论研究(4)即时训练(5)总结反思(6)任务延续,六个层次的学法,他们环环相扣,层层深入,从而顺利完成教

5、学目的。自主探索、观察发现、类比猜想、合作交流。三、说教学程序教学流程1、创设情景:引例:某公司,由于资金短缺,决定向银行进行贷款,双方约定,在3年内,公司每月向银行借款10万元,为了还本付息,公司第一个月要向银行还款10元,第二个月还款20元,第三个月还款40元,……。即每月还款的数量是前一个月的2倍,请问,假如你是公司经理或银行主管,你会在这个合约上签字吗?在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。数列{an}是以100000为首项,1为公比的等比数列,即

6、常数列。数列{bn}是以10为首项,2为公比的等比数列。当学生跃跃欲试要求这两个数列的和的时候,课题的引入已经水到渠成。教师再由特殊到一般、具体到抽象的启示,正式引入课题。2、讲授新课:等比数列有两大类:公比q=1和q1两种情形当q=1时,Sn=na1当q1时,Sn=a1+a1q+……+a1qn-1=q1时,Sn的结果是怎么推导出来的呢?本节课的难点就在于此。预习过课本的学生会知道这个结果以及推导过程,但是他们知其然而不知其所以然,可以说大部分学生根据他们掌握的知识和经验是难以推出这个公式的。这时

7、候我们可以首先让学生们进行思考,如果运用数学中“从特殊到一般”的数学思想方法,能不能向这个结果靠拢呢?我们不难得到下述结论:S1=a1,S2=a1+a2=a1+a1q=a1(1+q)S3=a1+a2+a3=a1+a1q+a1q2=a1(1+q+q2)……Sn=a1+a2+……+an=a1(1+q+q2+……+qn-1)不少同学根据这个式子可能会想到a1(1+q+q2+……+qn-1)=a1(1+q+q2+……+qn-1)(1-q)/(1-q)=设计思路与媒体应用分析这是一个悬念式的实例,后面的“假

8、如”又把学生带入了实例创设的情境,让学生直接参与了“市场经济”。根据心理学,情境具有暗示作用,在暗示作用下,学生自觉不自觉地参与了情境中的角色,这样他们的学习积极性和思维活动就会极大的调动起来。本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n项和公式及应用。等比数列的前n项和公式的推导是本节课的难点。依据如下:(1) 从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。(2) 从学科知识上讲,推导属于学

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。