2013高考数学复习要点总结

2013高考数学复习要点总结

ID:18393067

大小:2.34 MB

页数:25页

时间:2018-09-17

2013高考数学复习要点总结_第1页
2013高考数学复习要点总结_第2页
2013高考数学复习要点总结_第3页
2013高考数学复习要点总结_第4页
2013高考数学复习要点总结_第5页
资源描述:

《2013高考数学复习要点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2013高考数学总复习要点精讲(共十一章)一、集合与简易逻辑1.集合的元素具有无序性和互异性.2.对集合,时,你是否注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.L 3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为4.“交的补等于补的并,即”;“并的补等于补的交,即”.5.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中

2、“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”L.8.充要条件二、函 数1.指数式、对数式,,,,.,,,,,,..2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域

3、是映射中像集的子集”.(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.(4)原函数与反函数有两个“交叉关系”:自变量与因变量、定义域与值域.求一个函数的反函数,分三步:逆解、交换、定域(确定原函数的值域,并作为反函数的定义域).注意:①,,,但.②L函数的反函数是,而不是.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.单调函数的反函数和原函数有相同的性;如果奇函数有反函数,

4、那么其反函数一定还是奇函数.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称L.确定函数奇偶性的常用方法有:定义法、图像法等等. 对于偶函数而言有:.(2)若奇函数定义域中有0,则必有.即的定义域时,是为奇函数的必要非充分条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)函数单调是函数有反函数的一个充分非必要条件.(5)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.(6)函数单调是函数有反函数的充分非必要条

5、件,奇函数可能反函数,但偶函数只有有反函数;既奇又偶函数有无穷多个(,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)4.对称性与周期性(以下结论要消化吸收,不可强记)(1)函数与函数的图像关于直线(轴)对称.推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称.推广二:函数,的图像关于直线(由确定)对称.(2)函数与函数的图像关于直线(轴)对称.推广:函数与函数的图像关于直线对称(由“和的

6、一半确定”).(3)函数与函数的图像关于坐标原点中心对称.推广:函数与函数的图像关于点中心对称.(4)函数与函数的图像关于直线对称.推广:曲线关于直线的对称曲线是;曲线关于直线的对称曲线是.(5)类比“三角函数图像”得:若图像有两条对称轴,则必是周期函数,且一周期为.若图像有两个对称中心,则是周期函数,且一周期为.如果函数的图像有下一个对称中心和一条对称轴,则函数必是周期函数,且一周期为. 如果是R上的周期函数,且一个周期为,那么. 特别:若恒成立,则.若恒成立,则.若恒成立,则.三、数  列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的

7、关系:(必要时请分类讨论).注意:;.2.等差数列中:(1)等差数列公差的取值与等差数列的单调性.(2);.(3)、也成等差数列.(4)两等差数列对应项和(差)组成的新数列仍成等差数列.(5)仍成等差数列.(6),,,,.(7);;.(8)“首正”的递减等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。