5.3简单的轴对称图形(一)教学设计

5.3简单的轴对称图形(一)教学设计

ID:18368489

大小:163.00 KB

页数:7页

时间:2018-09-16

5.3简单的轴对称图形(一)教学设计_第1页
5.3简单的轴对称图形(一)教学设计_第2页
5.3简单的轴对称图形(一)教学设计_第3页
5.3简单的轴对称图形(一)教学设计_第4页
5.3简单的轴对称图形(一)教学设计_第5页
资源描述:

《5.3简单的轴对称图形(一)教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五章生活中的轴对称3简单的轴对称图形(第1课时)一、学生起点分析学生的知识技能基础:学生在生活中已经对轴对称现象不陌生了,在本章前面两节课中,认识了轴对称的现象,加强了对图形的理解和认识,初步探索并了解了概念,为接下来的学习奠定了基础。学生活动经验基础:在相关知识的学习过程中,学生通过想象,再动手操作验证自己的想象,解决了一些简单的现实问题,感受到了充分观察、操作的必要性和作用,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

2、二、教学任务分析教科书基于学生对轴对称图形的认识,提出了本课的具体学习任务,认识等腰三角形和等边三角形的轴对称性及其有关性质。本节课的教学目标是:1.经历探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念。2.探索并掌握等腰三角形的轴对称性及其相关性质。3.通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念。三、教学设计分析按照学生的认识规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法为辅。教学中,精心设计了一个又一个带有启发性

3、和思考性的问题,创设问题情境,诱导学生思考、操作,教师适时地演示,并用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于自主探索、合作交流的积极状态,从而培养学生的思维能力。本节课设计了如下教学环节:第一环节知识回顾内容:观察下列各种图形,判断是不是轴对称图形,能找出对称轴吗?[来源:Zxxk.Com]活动目的:通过问题,希望学生能回忆起前两节所学内容,培养学生善于观察图形、乐于探索研究的学习品质及全面思考的能力。实际教学效果:学生大部分能够准确而全面的找出对称轴,并能说出部分图标的标志名称。以

4、生活中的事例入题,大大提高了学生的学习兴趣,也由此告知学生数学来源于生活的道理。注意事项:本节涉及的有关现实中的轴对称图形可以根据实际适时调整,如脸谱,生活中的建筑等,生活中存在大量的实际背景,所挖掘的素材应包括丰富多彩的现实世界中的图形,使学生能够用轴对称的观点来揭示现实世界中与图形有关的现象,同时能够欣赏现实世界中蕴涵的有关轴对称的图案。第二环节创设情境导入新课活动内容:1.认识等腰三角形。给出三种等腰三角形的形状,包括锐角、钝角、直角形状的图形。2.介绍等腰三角形的概念及各部分名称。给出生活中含有等腰三角形的建筑物图

5、片,生活中的实例随处可见,给学生们呈现最直观的现象。如艾菲尔铁塔、埃及金字塔等。活动目的:牢固而扎实的掌握等腰三角形的有关概念,尤其是等腰三角形的形状的分类,对于解决有关计算中多值问题大有助益,另外,等腰三角形的概念实际上也是它的一个有用性质,无论是在计算还是证明中都有很大的作用。实际教学效果:学生在一个开放的环境下展示、接触生活中的等腰三角形,从中获取了信息,感受生活中的事例。而且讲解中图形生动形象,使概念的获取更加全面。注意事项:学生可能在回答次问题时表现出差异,有的学生可能在分析等腰三角形特点的基础上直接想象出它的对

6、称轴,有的学生可能需要借助折叠等活动寻找出对称轴,教师要鼓励学生进行充分的交流,注重操作和思考的有机结合。对于通过想象解决问题的学生,鼓励他们通过操作进行验证,对于通过操作得出结论的学生,鼓励他们重新观察等腰三角形的轴对称性。第三环节动手操作探求新知活动内容:等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?1.思考(1)等腰三角形是轴对称图形吗?找出对称轴。(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?(3)底边上的中线所在的直

7、线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?2.归纳(1)等腰三角形是轴对称图形。(2)∠B=∠C(3)∠BAD=∠CAD,AD为顶角的平分线(4)∠ADB=∠ADC=90°AD为底边上的高(5)BD=CD,AD为底边上的中线。等腰三角形的特征:1).等腰三角形是轴对称图形2).等腰三角形的顶角平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。3).等腰三角形的两个底角相等。3.推理等腰三角形顶角的平分线、底边上的中线、底边上的高重

8、合(也称为“三线合一”).证明:因为AD是角平分线,所以∠BAD=∠CAD在ΔABD和ΔACD中,因为AB=AC,∠BAD=∠CAD,AD=AD所以ΔABD≌ΔACD所以BD=CD,∠ADB=∠ADC=90˚所以AD是ΔABC的角平分线、底边上的中线、底边上的高。活动目的:探索等腰三角形的轴对称性及其有

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。