欢迎来到天天文库
浏览记录
ID:18357320
大小:3.33 MB
页数:22页
时间:2018-09-17
《浙教版初中数学教案九年级下第一章》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、1.1锐角三角函数(1)教学目标:1.探索直角三角形中锐角三角函数值与三边之间的关系。2.掌握三角函数定义式:sinA=,cosA=,重点和难点重点:三角函数定义的理解。难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。【教学过程】一、情境导入如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB和A′B′相等而∠α和∠β大小不同,那么它们的高度AC和A′C′相等吗?AB、AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有什么关系呢?------导出新课二、新
2、课教学1、合作探究(1)作2、三角函数的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.∠A的对边与邻边的比叫做∠A的正弦(sine),记作sinA,即sinA=∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=∠A的对边与∠A的邻边的比叫做∠A的正切(tangent),记作tanA,即constructionqualityacceptanceandassessmentRegulation(ProfessionalEdition)(DL/
3、T5210.2-2009~DL/T5210.8-2009);1.9thequalitycheckoutandevaluationofelectricequipmentinstallationengineeringcode(DL/T5161.1-2002~5161.17-2002);1.10thenormsofconstructionsupervision,theelectricpowerconstructionsupervisionregulations锐角A的正弦、余弦和正切统称∠A的三角函数.注意:si
4、nA,cosA,tanA都是一个完整的符号,单独的“sin”没有意义,其中A前面的“∠”一般省略不写。师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?师:(点拨)直角三角形中,斜边大于直角边.生:独立思考,尝试回答,交流结果.明确:0<sina<1,0<cosa<1.巩固练习:课本第6页课内练习T1、作业题T1、23、例题教学:课本第5页中例1.例1如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,求∠A,∠B的正弦,余弦和正切.分析:由勾股定理求出AC的长度,再根据直角三角形中
5、锐角三角函数值与三边之间的关系求出各函数值。师:观察以上计算结果,你发现了什么?明确:sinA=cosB,cosA=sinB,tanA·tanB=14、课堂练习:课本第6页课内练习T2、3,作业题T3、4、5、6三、课堂小结:谈谈今天的收获1、内容总结(1)在RtΔABC中,设∠C=900,∠α为RtΔABC的一个锐角,则∠α的正弦,∠α的余弦,∠α的正切(2)一般地,在Rt△ABC中,当∠C=90°时,sinA=cosB,cosA=sinB,tanA·tanB=12、方法归纳在涉及直角三角形边角关系时,常
6、借助三角函数定义来解四、布置作业:练习卷constructionqualityacceptanceandassessmentRegulation(ProfessionalEdition)(DL/T5210.2-2009~DL/T5210.8-2009);1.9thequalitycheckoutandevaluationofelectricequipmentinstallationengineeringcode(DL/T5161.1-2002~5161.17-2002);1.10thenormsofcons
7、tructionsupervision,theelectricpowerconstructionsupervisionregulations1.1锐角三角函数(2)教学目标(一)教学知识点1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(二)思维训练要求1.经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现
8、的能力.2.培养学生把实际问题转化为数学问题的能力.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心.培养学生独立思考问题的习惯.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.教学难点进一步体会三角函数的意义.教学过程Ⅰ.创设问题情境,引入新课
此文档下载收益归作者所有