资源描述:
《高数高等数学下册复习提纲》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高等数学下册复习提纲第八章多元函数微分学本章知识点本章知识点(按历年考试出现次数从高到低排列):复合函数求导(☆☆☆☆☆)条件极值---拉格朗日乘数法(☆☆☆☆)无条件极值(☆☆☆☆)曲面切平面、曲线切线(☆☆☆☆)隐函数(组)求导(☆☆☆)一阶偏导数、全微分计算(☆☆☆)方向导数、梯度计算(☆☆)重极限、累次极限计算(☆☆)函数定义域求法(☆)1.多元复合函数高阶导数∂z∂2z及.∂x∂y∂x例设z=f(sinx,cosy,ex+y),其中f具有二阶连续偏导数,求解∂z=f1′⋅cosx+f3′⋅ex+y,∂x∂
2、2z∂2z′′′′′′′′==[f12⋅(−siny)+f13⋅ex+y]cosx+ex+yf3′+[f32⋅(−siny)+f33⋅ex+y]ex+y∂y∂x∂x∂y析1)明确函数的结构(树形图)zuvwx+yxyxy,那么复合之后z是关于x,y的二元函数.根据结构这里u=sinx,v=cosy,w=otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJiangxi,andDirectorofthenewOfficeinJingdezhen,Jian
3、gxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrganization,SecretaryoftheSpecialCommitteeAfterthevictoryofthelongMarch,hehasbeentheNorthwestOfficeoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCo
4、mmitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministersande图,可以知道:对x的导数,有几条线通到“树梢”上的x,结果中就应该有几项,而每一项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,按线相乘,“分线相加”.2)f1′,f3′是f1′(sinx,cosy,e相同,仍然是sinx,cosy,ex+yx+y),f3′(sinx,cosy,ex+y)的简写形式,它们与z的结构的函数.所以f1′对y求导数为1∂f1′
5、′′′′=f12⋅(−siny)+f13⋅ex+y.∂y所以求导过程中要始终理清函数结构,确保运算不重、不漏.∂2z∂2z∂2z∂2z3)f具有二阶连续偏导数,从而连续,所以.,=∂y∂x∂x∂y∂y∂x∂x∂yy2∂2z),其中f具有二阶连续偏导数,求2.练1.设z=xf(2x,x∂x22.设z=f(2x−y)+g(esiny,x+y)其中f二阶可导,g具有二阶连续偏导数,x22求∂2z.∂x∂y2.多元函数极值例1.求函数f(x,y)=ex−y(x2−2y2)的极值.解(1)求驻点.由fx(x,y)=ex−y
6、(x2−2y2)+2xex−y=0,x−y22x−yfy(x,y)=−e(x−2y)−4ye=0得两个驻点(0,0),(−4,−2),(2)求f(x,y)otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJiangxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrgan
7、ization,SecretaryoftheSpecialCommitteeAfterthevictoryofthelongMarch,hehasbeentheNorthwestOfficeoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCommitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministers
8、and的二阶偏导数fxx(x,y)=ex−y(x2−2y2+4x+2),fxy(x,y)=ex−y(2y2−x2−2x−4y),fyy(x,y)=ex−y(x2−2y2+8y−4),(3)讨论驻点是否为极值点在(0,0)处,有A=2,B=0,C=−4,AC−B=−8<0,由极值的充分条件知2(0,0)不是极值点,f(0,0)=0不是函数的极值;在(−4,−2