资源描述:
《【精】主成分分析与因子分析详细的异同和spss操作》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、主成分分析与因子分析详细的异同和SPSS软件摘要:主成分分析与因子分析(R-型)应用十分广泛,但一些论文和一些SPSS软件教科书(见附文)出错。本文指出了这些错误及其成因,指出了出错造成的危害,从原理上给出了主成分分析与R-型因子分析数学模型详细的异同,给出了避免出错的方法,并对SPSS软件及有关教科书提出了一些建议。关键词:主成分分析;因子分析;SPSS软件;出错;避免设=(X1,…,XP为标准化随机向量(p≥2),R为相关系数矩阵,=(F1,…,Fm为主成分向量,=(Z1,…,Zm为因子向量,m≤p,为方便,因子、因子估计、因子
2、得分用同一记号。一、问题的提出与结论主成分分析与R-型因子分析是多元统计分析中的两个重要方法,同是降维技术,应用范围十分广泛,但通过流行甚广的SPSS软件调用这两种方法的过程命令,使用者容易出错,是什么原因造成这些错误呢?主成分分析与R-型因子分析到底有何异同呢?出错会造成什么危害呢?由于SPSS软件在经济、医学、管理等领域中的广泛流行使用,解决这些问题尤其必要。经过对一些论文和一些SPSS软件教科书(见附文)仔细查证分析、比较、研究得出:出错原因:有些使用者和书作者对主成分分析与R-型因子分析的原理、异同与解题步骤掌握不透,现行S
3、PSS软件及其书中没有完善这两种方法的研究(对高校师生出错影响很大)。结论:主成分分析与R-型因子分析有10处主要的不同,致使主成分分析与因子分析的定量综合评价体系不同,混淆在一起是不同定量值交替错误,综合评价必须分开进行。出错带来的危害:企业经济效益、竞争力等的综合评价会带来误评,医学诊断会带来误诊,决策会带来误断等。二、一些使用者出现的错误及其成因分析经过仔细查证分析,有下列错误:使用主成分分析时①对主成分分析的原理没有掌握,如叙述主成分分析概念出错。②主成分F求解出错,如=中(为单位矩阵,的意义见表1)。③不知主成分F的命名依
4、据,对主成分F命名出错。④解释变量某Xk被丢失。⑤对错误地进行旋转。⑥错误地进行回归求F。⑦把因子分析法(含没有旋转过程的)错误地当作主成分分析法。使用因子分析时①对因子分析的原理没有掌握,如将因子分析的思想叙述为主成分分析的思想。②不知因子Zi的命名依据,对因子Zi的命名出错,如用因子得分函数对因子Zi进行命名。③解释变量某Xk被丢失。④将主成分或因子错误地表示为(的意义见表1)。⑤不知相关系数矩阵特征值与因子贡献vi的区别,如综合因子得分函数Z综=Zi中的vi错误地取为特征值。使用SPSS软件时①由于SPSS软件本身无主成分分析
5、模块,有些使用者就用因子分析中一些模块来制造主成分的结果,出现了混乱的定量过程。②由于SPSS软件教科书中因子分析内容处混淆主成分分析与因子分析,致使有些使用者也混淆这两种方法出错。从以上可看出出错的原因是:有些使用者对主成分分析与R-型因子分析的原理(原理可见[4])、异同与解题步骤掌握不透,现行SPSS软件及其书中没有完善这两种方法的研究。三、主成分分析与R-型因子分析数学模型的异同比较这里给出的主成分分析与R-型因子分析的异同,与现行观点相比,是内容与过程上的比较,更透彻、更准确,是认识的深入。相同之处:主成分分析与R-型因子
6、分析都是对协差阵的逼近,都是打算降维解释数据集。具体为指标的正向化[3],指标的标准化(SPSS软件自动执行),通过相关系数矩阵判断变量间的相关性,求相关系数矩阵的特征值和特征向量,主成分间、因子间线性无关,用累计贡献率(%)、变量不出现丢失确定主成分、因子个数m,前m个主成分与前m个因子对X的综合贡献相同、是最大化的,命名依据都是主成分、因子与变量的相关系数。不同之处:方差,最大化方向,所处的坐标系(标准正交性),应用上侧重等见表1。表1 主成分分析与R-型因子分析的不同区别项目主成分分
7、析数学模型:R-型因子分析数学模型:表达式与系数矩阵=()=(…,),,是相应的特征值和单位特征向量,≥…≥≥0。+(为特殊因子),因子载荷矩阵m=()=,=(…,)为初等因子载荷矩阵*(同左)。因变量方差最大化 Fi依次达到信息贡献最大化,VarFi=。 Zi没有达到最大化,VarZi=1。矩阵方差最大化旋转无,旋转后就不是主成分了,因为VarFi≠λi。有,为方差最大正交旋转矩阵,m达到方差最大化。标准正交性是,即(判据之一)。非,因为。因变量对X的贡献特征值。vi=,vi,通常>v1。相关系数=。=。
8、命名依据用(,…,)式中系数绝对值大的对应变量对Fj命名,有时命名清晰性低。将的第j列绝对值大的对应变量归为Zj一类并由此对Zj命名,命名清晰性高(精细)。回归过程无。有,因子得分函数综合评价函数及方差F综=Fi,VarF综=(,或…