资源描述:
《高中数学 2.5 等比数列的前n项和教案2 新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.5 等比数列的前n项和教学过程推进新课[合作探究]师在对一般形式推导之前,我们先思考一个特殊的简单情形:1+q+q2+…+qn=?师这个式子更突出表现了等比数列的特征,请同学们注意观察.生观察、独立思考、合作交流、自主探究.师若将上式左边的每一项乘以公比q,就出现了什么样的结果呢?生q+q2+…+qn+qn+1.生每一项就成了它后面相邻的一项.师对上面的问题的解决有什么帮助吗?师生共同探索:如果记Sn=1+q+q2+…+qn,那么qSn=q+q2+…+qn+qn+1.要想得到Sn,只要将两式相减,就立即有(1-
2、q)Sn=1-qn.师提问学生如何处理,适时提醒学生注意q的取值.生如果q≠1,则有.师当然,我们还要考虑一下如果q=1问题是什么样的结果.生如果q=1,那么Sn=n.师上面我们先思考了一个特殊的简单情形,那么,对于等比数列的一般情形我们怎样思考?课件展示:a1+a2+a3+…+an=?[教师精讲]师在上面的特殊简单情形解决过程中,蕴含着一个特殊而且重要的处理问题的方法,那就是“错位相减,消除差别”的方法.我们将这种方法简称为“错位相减法”.师在解决等比数列的一般情形时,我们还可以使用“错位相减法”.如果记Sn=a1+
3、a2+a3+…+an,那么qSn=a1q+a2q+a3q+…+anq,要想得到Sn,只要将两式相减,就立即有(1-q)Sn=a1-anq.师再次提醒学生注意q的取值.如果q≠1,则有.师上述过程如果我们略加变化一下,还可以得到如下的过程:如果记Sn=a1+a1q+a1q2+…+a1qn-1,那么qSn=a1q+a1q2+…+a1qn-1+a1qn,要想得到Sn,只要将两式相减,就立即有(1-q)Sn=a1-a1qn.如果q≠1,则有.师上述推导过程,只是形式上的不同,其本质没有什么差别,都是用的“错位相减法”.形式上
4、,前一个出现的是等比数列的五个基本量:a1,q,an,Sn,n中a1,q,an,Sn四个;后者出现的是a1,q,Sn,n四个,这将为我们今后运用公式求等比数列的前n项的和提供了选择的余地.值得重视的是:上述结论都是在“如果q≠1”的前提下得到的.言下之意,就是只有当等比数列的公比q≠1时,我们才能用上述公式.师现在请同学们想一想,对于等比数列的一般情形,如果q=1问题是什么样的结果呢?生独立思考、合作交流.生如果q=1,Sn=na1.师完全正确.如果q=1,那么Sn=nan正确吗?怎么解释?生正确.q=1时,等比数列的各项相等
5、,它的前n项的和等于它的任一项的n倍.师对了,这就是认清了问题的本质.师等比数列的前n项和公式的推导还有其他的方法,下面我们一起再来探讨一下:[合作探究]思路一:根据等比数列的定义,我们有:,再由合比定理,则得,即,从而就有(1-q)Sn=a1-anq.(以下从略)思路二:由Sn=a1+a2+a3+…+an得Sn=a1+a1q+a2q+…+an-1q=a1+q(a1+a2+…+an-1)=a1+q(Sn-an),从而得(1-q)Sn=a1-anq.(以下从略)师探究中我们们应该发现,Sn-Sn-1=an是一
6、个非常有用的关系,应该引起大家足够的重视.在这个关系式中,n的取值应该满足什么条件?生n>1.师对的,请同学们今后多多关注这个关系式:Sn-Sn-1=an,n>1.师综合上面的探究过程,我们得出:或者[例题剖析]【例题1】求下列等比数列的前8项的和:(1),,,…;(2)a1=27,a9=,q<0.[合作探究]师生共同分析:由(1)所给条件,可得,,求n=8时的和,直接用公式即可.由(2)所给条件,需要从中获取求和的条件,才能进一步求n=8时的和.而a9=a1q8,所以由条件可得q8==,再由q<0,可得,将所得
7、的值代入公式就可以了.生写出解答:(1)因为,,所以当n=8时,.(2)由a1=27,,可得,又由q<0,可得,于是当n=8时,.【例题2】某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?师根据题意,从中发现等比关系,从中抽象出等比数列,并明确这是一个已知Sn=30000求n的问题.生理解题意,从中发现等比关系,并找出等比数列中的基本量,列式,计算.解:根据题意,每年的销售量比上一年增加的百分率相同,所以,从今年起,每
8、年销售量组成一个等比数列{an},其中a1=5000,q=1+10%=1.1,Sn=30000.于是得到,整理得1.1n=1.6,两边取对数,得nlg1.1=lg1.6,用计算器算得≈≈5(年).