欢迎来到天天文库
浏览记录
ID:18181804
大小:908.00 KB
页数:32页
时间:2018-09-15
《第5章平行四边形教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5章平行四边形目录5.1 多边形(1)25.1 多边形(2)45.1 多边形(3)75.2 平行四边形115.4 中心对称175.5 平行四边形的判定(1)195.5 平行四边形的判定(2)235.6 三角形的中位线265.7 逆命题和逆定理(1)295.7 逆命题和逆定理(2)315.1 多边形(1)【教学目标】1.使学生理解四边形的有关概念2.使学生掌握四边形内角和定理及外角和定理的证明及简单应用3.体验把四边形问题转化为三角形问题来解决的化归思想【教学重点、难点】Ø重点:四边形内角和定理.Ø难点:四边形内角和定理的证明思路.【教学过程】1.
2、复习引入目前,整个社会的经济有了很大发展,许多家庭的地面都铺上了地砖、木板,不知同学们有没有仔细看过这些地砖的图形是如何构造,它们有什么特征。这一章我们将学习多边形的有关性质。在小学已经对四边形的知识有所了解,今天我们将更系统的学习它的性质,并运用性质解决一些新问题。2.讲解新课(1)四边形的有关概念。结合图形讲解四边形、四边形的边、顶点、角。强调四边形的表示方法,一定要按顶点顺序书写。如图,可表示为四边形ABCD或四边形ADCB(2)四边形内角和定理让学生在一张纸上任意画一个四边形,剪下它的四个角,把它们拼在一起(四个角的顶点重合)。通过实验、观
3、察、猜想得到:四边形的内角和为3600。让学生根据猜想得到的命题,画图、写出已知、求证。已知:四边形ABCD求证:∠A+∠B+∠C+∠D=360°证明:连结BD∵∠A+∠ABD+∠ADB=180°∠C+∠CBD+∠CDB=180°(理由)∴∠A+∠ABD+∠ADB+∠C+∠CBD+∠CDB=180°+180°即:∠A+∠ABC+∠C+∠CDA=360°对这个命题的证明可作如下启发:①我们已经知道哪一种图形的内角和?内角和为多少?②能否把问题化归为三角形来解决?证明过程由学生来完成,教师板书得四边形内角和定理:四边形的内角和等于360°(板书)练习:
4、如图(1)、(2),分别求∠a、∠1的度数。(1)(2)巩固四边形的内角和定理,复习同一顶点的一个内角与相邻外角的关系,指出∠1≠90°+70°+130°3、推导四边形的外角和定理在图(2)中分别画出以A、B、C、D为顶点的一个外角,记作∠2,∠3,∠4并求∠1+∠2+∠3+∠4的值。猜想并证明四边形的四个外角和等于360°。(由学生口述,教师板书)4、例题讲解:例1:如图,四边形的内角∠A、∠B、∠C、∠D的度数之比为1:1:0.6:1,求它的四个内角的度数。分析:强调已知中的比怎么用!解:∵∠A、∠B、∠C、∠D的度数之比为1:1:0.6:1∴
5、可设∠A=x,则∠B=∠D=x,∠C=0.6x又∵∠A+∠B+∠C+∠D=360°∴x+x+0.6x+x=360°∴x=100∴∠A=∠B=∠D=100°∠C=100×0.6=60°例2:在四边形ABCD中,已知∠A与∠C互补,∠B比∠D大15°求∠B、∠D的度数。解:∵∠A+∠B+∠C+∠D=360°,∠A+∠C=180°∴∠B+∠D=180°①又∵∠B-∠D=15°②由①、②得∠B=97.5°,∠D=82.5°注意:当四边形的四个内角中有两个角互补时,另两个角也互补。这个结论也可让学生记一记。5、练习P95A、作业题1、2,请两位学生板演(强调
6、解题过程)。B、共同完成课内练习2解:能,因为四边形的内角和等于360°,而且这四个四边形全等,所以能拼成如图形状。四、小结:1、四边形的概念。2、四边形的内角和定理。3、四边形外角和定理。五、布置作业:作业本(1)及书本P96(B)组。5.1 多边形(2)【教学目标】 1.探索任意多边形的内角和,体验归纳发现规律的思想方法.2.掌握多边形内角和的计算公式及外角和等于360°.3.会用多边形的内角和与外角和的性质解决简单几何问题.【教学重点、难点】Ø重点:本节教学的重点是任意多边形的内角和公式.Ø难点:例2的解题思路不易形成,是本节教学的难点.【教
7、学过程】一、教学过程1、创设情境,导入新课(1)上图中广场中心的边缘是一个边数为5的多边形——五边形。我们知道边数为3的多边形——三角形,边数为4的多边形——四边形,……边数为n的多边形——n边形(n≥3).(2)连结多边形不相邻两顶点的线段叫做多边形的对角线(是下面解决多边形问题的常用辅助线)。2、合作交流,探究新知(1)你能设法求出这个五边形的五个内角和吗?先启发学生回顾四边形的内角和及推理方法,下面可用连结对角线这同样的方法把多边形划分成若干个三角形来完成书本第96页的合作学习。边数图形从某顶点出发的对角线条数划分成的三角形个数多边形的内角和
8、3011×180°4122×180°56……………n(1)再启发学生观察所能划分成的三角形个数与边数n有关。(2)结论:n
此文档下载收益归作者所有