第二轮第 4讲 函数与方程的思想方法

第二轮第 4讲 函数与方程的思想方法

ID:18170727

大小:274.00 KB

页数:5页

时间:2018-09-14

第二轮第 4讲  函数与方程的思想方法_第1页
第二轮第 4讲  函数与方程的思想方法_第2页
第二轮第 4讲  函数与方程的思想方法_第3页
第二轮第 4讲  函数与方程的思想方法_第4页
第二轮第 4讲  函数与方程的思想方法_第5页
资源描述:

《第二轮第 4讲 函数与方程的思想方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第4讲函数与方程的思想方法一、知识整合函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0通过方程进行研究。就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题

2、可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获

3、得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系.3.(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点。(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为

4、不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。(4)函数f(x)=(n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论。(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决

5、。二、例题解析Ⅰ.运用函数与方程、表达式相互转化的观点解决函数、方程、表达式问题。例1已知,(a、b、c∈R),则有()(A)(B)(C)(D)解析法一:依题设有a·5-b·+c=0∴是实系数一元二次方程的一个实根;∴△=≥0∴故选(B)法二:去分母,移项,两边平方得:≥10ac+2·5a·c=20ac∴故选(B)点评解法一通过简单转化,敏锐地抓住了数与式的特点,运用方程的思想使问题得到解决;解法二转化为b2是a、c的函数,运用重要不等式,思路清晰,水到渠成。练习1已知关于的方程-(2m-8)x+-16=0的两个实

6、根、满足<<,则实数m的取值范围_______________。答案:;x21y02已知函数的图象如下,则()(A)(B)(C)(D)答案:A.3求使不等式≤·对大于1的任意x、y恒成立的a的取值范围。Ⅱ:构造函数或方程解决有关问题:例2已知,t∈[,8],对于f(t)值域内的所有实数m,不等式恒成立,求x的取值范围。解析∵t∈[,8],∴f(t)∈[,3]原题转化为:>0恒成立,为m的一次函数(这里思维的转化很重要)当x=2时,不等式不成立。∴x≠2。令g(m)=,m∈[,3]问题转化为g(m)在m∈[,3]上恒

7、对于0,则:;解得:x>2或x<-1评析首先明确本题是求x的取值范围,这里注意另一个变量m,不等式的左边恰是m的一次函数,因此依据一次函数的特性得到解决。在多个字母变量的问题中,选准“主元”往往是解题的关键。例3为了更好的了解鲸的生活习性,某动物保护组织在受伤的鲸身上装了电子监测装置,从海洋放归点A处,如图(1)所示,把它放回大海,并沿海岸线由西向东不停地对它进行了长达40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(设鲸沿海面游动),然后又在观测站B处对鲸进行生活习性的详细观测,已知AB=15km,观测站B的观

8、测半径为5km。观测时刻t(分钟)跟踪观测点到放归点的距离a(km)鲸位于跟踪观测点正北海岸西东图1AB方向的距离b(km)1010.9992021.4133031.7324042.001(1)据表中信息:①计算出鲸沿海岸线方向运动的速度;②试写出a、b近似地满足的关系式并画出鲸的运动路线草图;AByx图2(2)若鲸继续以(1)-②运动的路线运动,试预测,该

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。