理学数学毕业论文 让学生在探究学习中成长

理学数学毕业论文 让学生在探究学习中成长

ID:1814018

大小:31.00 KB

页数:6页

时间:2017-11-13

理学数学毕业论文 让学生在探究学习中成长_第1页
理学数学毕业论文 让学生在探究学习中成长_第2页
理学数学毕业论文 让学生在探究学习中成长_第3页
理学数学毕业论文 让学生在探究学习中成长_第4页
理学数学毕业论文 让学生在探究学习中成长_第5页
资源描述:

《理学数学毕业论文 让学生在探究学习中成长》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、湖南师范大学本科毕业论文考籍号:XXXXXXXXX姓名:XXX专业:理学数学论文题目:让学生在探究学习中成长指导老师:XXX二〇一一年十二月十日培养学生的数学探究能力,是新时期对中学生的要求,也是科学技术迅猛发展的需要。《数学课程标准》明确指出:数学课堂教学要从学生已有的生活经验出发,让学生通过亲身经历把在实际生活中遇到的问题抽象成数学学科的模型,并进行解释和应用的过程。要达到这样的目的,教师在数学课堂教学中,必须运用多种多样的方法,培养学生的探究能力,这样才能把数学问题,通过学生的探究和理解,转化为学生解

2、决数学问题的能力,从而大大提高课堂教学效果,让学生在探究学习中成长。如何让学生在数学探究学习中成长,可以从如下几个方面去实践:一、在自主学习中探究新课标的教学理念突出地体现了教师在教学中要以学生为本的教学思想,教师要非常重视学生参与学习新知识的过程,而且要大胆地运用学生的各种感觉器官探索研究、促使学生头脑中已有的那些非正规的数学知识和生活中的亲身体验上升为数学的科学规律、科学结论,让生活中获得的直接经验和间接经验通过数学的探究有交融点,做到理论和实践和谐统一,形成科学的、系统的数学知识,为学习更深层次和相关

3、学科打下坚实的基础。比如学习因式分解这部分内容,首先要让学生在自主学习中明确因式分解的知识结构:一是因式分解的定义;二是因式分解的基本方法——提取公因式法和公式法,公式法又分为平方差公式和完全平方公式。其次指出学生在自主学习中明确知识方法的归纳。因式分解:把一个多项式化为几个因式的积的形式,叫做把这个多项式因式分解;公因式:几个单项式的公因式,确定公因式的方法是:系数——取多项式的各项系数的最大公约数;字母——取各项都含有的字母(或多项式因式)的最低次幂。提取公因式法:逆用乘法分配律,如ma+mb+mc=m

4、(a+b+c);乘法公式逆用。利用平方差公式a2–b2=(a+b)(a-b);利用完全平方公式:a2-2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2。同时还要在自主学习中明确因式分解的一般步骤:①如果多项式的各项有公因式,那么先提出公因式;②如果各项设有公因式,那么可以尝试运用乘法来分解;③分解因式,必须进行到每一个因式都不能再分解为止。再次是要在自主学习中加强训练,特别是比较特殊的因式分解训练。总之,学生在自主学习中,教师也要加强指导,指出一条路让学生去探究,去理解,去掌握知识,并且能运用知

5、识,学生经过自己探究得来的知识和运用知识的方法是牢固的,可以说终生受用。二、在情境中探究新课标明确指出:“数学教学要紧密联系学生的生活实际,从学生生活经验和已有的知识出发,创设生动有趣的情境,从而提高学生的学习效率。”数学课堂教学中,教师创设问题情境的目的,是引发学生的认识冲突,激发学生学习数学的动机和兴趣,以便提高课堂效果。实践证明,巧妙的问题情境能激活学生的思维,激发学习求知欲,产生好奇心,让学生在问题情境中去探究问题,把数学课上得生动活泼,充满艺术氛围。如教学无理数的知识时,教师可以这样创设情境,我们

6、在数学学习中都明白了有理数都可以用数轴上的点来表示,那么数轴上的点都是有理数吗?如图:作边长为1的正方形,以O为圆心,对角线为半径画弧,交数轴于点A,则点A表示的是多少?“2”“3”表示的数是多少?它是整数或分数吗?让学生在这样的情境中探究,探究其结果的热情自然高涨,也达到了提高数学课堂教学效果的目的。三、在合作中探究在数学课堂教学中,教师要给学生提供合作探究的平台,鼓励学生与学生之间,学生与教师之间交流合作,探究问题,让学生在讨论、质疑的基础上发现知识的规律,进而运用规律,提高自己解决问题的能力。让学生在

7、合作中探究,能很好地形成探究学习的氛围,培养学生的参与意识,培养学生合作精神和团队意识,有效地提高学生发现问题,分析问题和解决问题的能力。例如教学一次函数与反比例函数,总结其知识的结构系统时,教学时就可以把学生分成两组,一组总结一次函数的知识结构系统,另一组总结反比例函数的知识结构系统。教师指导一组学生在合作学习时应让学生掌握好一次函数正比例函数y=kx(k=o),k为常数的图象与性质;y=kx+b(k=b,k,b)为常数的图象与性质;一次函数的应用;根据实际问题建立一次函数模型,根据一次函数的图象及性质解

8、决实际问题。教师指导另一组学生在合作学习时也应让学生掌握反比例函数的解析式图象性质及反比例函数的应用等。也可以给出一个例题,一个组解题,另一组分析,点题。例如:已知一次函数y=x+m与反比例函数y=x的图象在第一象限的交点为p(x、02),(1):求xo及m的值;(2)求一次函数的图象与两坐标轴的交点坐标;(3)求同一坐标内画出它们的图象,并写出使一次函数值小于反比例函数值时x的取值范围。教师一边指导学生在合作学

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。