假设检验及其应用

假设检验及其应用

ID:18012097

大小:293.59 KB

页数:13页

时间:2018-09-12

假设检验及其应用_第1页
假设检验及其应用_第2页
假设检验及其应用_第3页
假设检验及其应用_第4页
假设检验及其应用_第5页
资源描述:

《假设检验及其应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、题目假设检验及其应用论文提要假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值�某一随机变量是否服从某种概率分布的假设�然后利用样本资料采用一定的统计方法计算出有关检验的统计量�依据一定的概率原则�以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异�是否应当接受原假设选择的一种检验方法。用样本指标估计总体指标�其结论有的完全可靠�有的只有不同程度的可靠性�需要进一步加以检验和证实。通过检验�对样本指标与假设的总体指标之间是否存在差别作出判断�是否接受原假设。

2、这里必须明确�进行检验的目的不是怀疑样本指标本身是否计算正确�而是为了分析样本指标和总体指标之间是否存在显著差异。从这个意义上�假设检验又称为显著性检验。1假设检验及其应用陈雪枫摘要�假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是�根据问题的需要对所研究的总体作某种假设�记作H�选取合适的统计量�这个0统计量的选取要使得在假设H成立时�其分布为已知�由实测的样本�计算出统计量的值�0并根据预先给定的显著性水平进行检验�作出拒绝或接受假设H的判断。常用的假设检验0方法有u—检验法、t—检验法、

3、X2检验法、F—检验法�秩和检验等关键词�数学归纳法归纳原理历程应用推广序言假设检验亦称“显著性检验�Testofstatisticalsignificance�”�是假设检验用来判断样本与样本�样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。其基本原理是先对总体的特征作出某种假设�然后通过抽样研究的统计推理�对此假设应该被拒绝还是接受作出推断。生物现象的个体差异是客观存在�以致抽样误差不可避免�所以我们不能仅凭个别样本的值来下结论。当遇到两个或几个样本均数�或率�、样本均数�率�与已知总体均数�率�有

4、大有小时�应当考虑到造成这种差别的原因有两种可能�一是这两个或几个样本均数�或率�来自同一总体�其差别仅仅由于抽样误差即偶然性所造成�二是这两个或几个样本均数�或率�来自不同的总体�即其差别不仅由抽样误差造成�而主要是由实验因素不同所引起的。假设检验的目的就在于排除抽样误差的影响�区分差别在统计上是否成立�并了解事件发生的概率。21假设检验的基本思想假设检验的基本思想是小概率反证法思想。小概率思想是指小概率事件�P<0.01或P<0.05�在一次试验中基本上不会发生。反证法思想是先提出假设(检验假设H0)�再用适当的统

5、计方法确定假设成立的可能性大小�如可能性小,则认为假设不成立�若可能性大�则还不能认为假设不成立。进行假设检验�先要对假设进行陈述。通过下例加以说明。例如�设某工厂制造某种产品的某种精度服从平均数为方差为的正态分布�据过去的数据�已知平均数为75�方差为100。现在经过技术革新�改进了制造方法�出现了平均数大于75�方差没有变更�但仍存在平均数不超过75的可能性。试陈述为统计假设。根据上述情况�可有两种假设�一个是假想平均数不超过75�即假设另一个假想是平均数大于75�即假设如果我们把作为原假设�即被检验的假设�称作零

6、假设�记作于是�假设相对于假设来说�是约定的、补充的假设�记作它和有两者选择其一的意思�即作为被检验的假设�则就是备择的�故称为备择假设或对立假设。还须指出�哪个是零假设�哪个是备择假设�是无关紧要的。我们关心的问题�是要探索哪一个假设被接受的问题。被接受的假设是要作为推理的基础。在实际问题中�一般要考虑事情发生的逻辑顺序和关心的事件�来设立零假设和备择假设。在作出了统计假设之后�就要采用适当的方法来决定是否应该接受零假设。由于运用统计方法所遇到的问题不同�因而解决问题的方法也不尽相同。但其解决方法的基本思想却是一致的

7、�即都是“概率反证法”思想�即�(1)为了检验一个零假设(即虚拟假设)是否成立�先假定它是成立的�然后看接受这个假设之后�是否会导致不合理结果。如果结果是合理的�就接受它�如不合理�则否定原假设。(2)所谓导致不合理结果�就是看是否在一次观察中�出现小概率事件。通常把出现小概率事件的概率记为0�即显著性水平。它在次数函数图形中是曲线两端或一端的面积。因此�从统计检验来说�就涉及到双侧检验和单侧检验问题。在实践中采用何类检验是由实际问题的性质来决定的。一般可以这样考虑�①双侧检验。如果检验的目的是检验抽样的样本统计量与假

8、设参数的差数是否过大(无论是正方向还是负方向)�就把风险平分在右侧和左侧。比如显著性水平为0.05�即概率曲线左右两侧各占�即0.025。②单侧检验。这种检验只注意估计值是否偏高或偏低。如只注意偏低�则临界值在左侧�称左侧检验�如只注意偏高�则临界值在右侧�称右侧检验。对总体的参数的检量�是通过由样本计算的统计量来实现的。所以检验

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。