欢迎来到天天文库
浏览记录
ID:1794483
大小:37.50 KB
页数:6页
时间:2017-11-13
《奥赛专题-同余问题》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、奥赛专题--同余问题[专题介绍]生活中我会经常遇到与余数有关的问题,比如:某年级有将近400名学生。有一次演出节目排队时出现:如果每8人站成一列则多余1人;如果改为每9人站成一列则仍多余1人;结果发现现成每10人结成一列,结果还是多余1人;聪名的你知道该年级共有学生多少名吗?假设有一名学生不参加演出,则结果一定是不管每列站8人或9人或10人都将刚好站齐。因此此时学生人数应是8、9、10公倍数,而8、9、10的最小公倍数是360,因此可知该年级共有361人。研究与余数有关的问题,能帮助我们解决很多较为复杂的问题。[分析]1、两个整数a和b,除以一
2、个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即a≡b(modm)2、同余的重要性质及举例。〈1〉a≡a(modm)(a为任意自然)〈2〉若a≡b(modm),则b≡a(modm)〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm)〈4〉若a≡b(modm),则ac≡bc(modm)〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm)〈6〉若a≡b(modm)则an≡bm(modm)其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常
3、被称为"同余的可开方性"注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm)3、整数分类:〈1〉用2来将整数分类,分为两类:1,3,5,7,9,……(奇数)0,2,4,6,8,……(偶数)〈2〉用3来将整数分类,分为三类:0,3,6,9,12,……(被3除余数是0)1,4,7,10,13,……(被3除余数是1)2,5,8,11,14,……(被3除余数是2)〈3〉在模6的情况下,可将整数分成六类,分别是:0(mod6):0,6,12,18,24,……1(mod6):1,7,13,19,25,……2
4、(mod6):2,8,14,20,26,……3(mod6):3,9,15,21,27,……4(mod6):4,10,16,22,29,……5(mod6):5,11,17,23,29,……[经典例题]例1:求437×309×1993被7除的余数。思路分析:如果将437×309×1993算出以后,再除以7,从而引得到,即437×309×1993=269120769,此数被7除的余数为1。但是能否寻找更为简变的办法呢?473≡3(mod7)309≡1(mod7)由"同余的可乘性"知:437×309≡3×1(mod7)≡3(mod7)又因为1993≡5
5、(mod7)所以:437×309×1993≡3×5(mod7)≡15(mod7)≡1(mod7)即:437×309×1993被7除余1。例2:70个数排成一行,除了两头的两个数以外,每个数的三倍恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,……,问这一行数最右边的一个数被6除的余数是几?思路分析:如果将这70个数一一列出,得到第70个数后,再用它去除以6得余数,总是可以的,但计算量太大。即然这70个数中:中间的一个数的3倍是它两边的数的和,那么它们被6除以后的余数是否有类似的规律呢?0,1,3,8,21,55,1
6、44,……被6除的余数依次是0,1,3,2,3,1,0,……结果余数有类似的规律,继续观察,可以得到:0,1,3,2,3,1,0,5,3,4,3,5,0,1,3,2,3,……可以看出余数前12个数一段,将重复出现。70÷2=5……10,第六段的第十个数为4,这便是原来数中第70个数被6除的余数。思路分析:我们被直接用除法算式,结果如何。例4、分别求满足下列条件的最小自然数:(1)用3除余1,用5除余1,用7除余1。(2)用3除余2,用5除余1,用7除余1。(3)用3除余1,用5除余2,用7除余2。(4)用3除余2,用7除余4,用11除余1。思路
7、分析:(1)该数减去1以后,是3,5和7的最小公倍数105,所以该数的是105+1=106(2)该数减去1以后是5和7的公倍数。因此我们可以以5和7的公倍数中去寻找答案。下面列举一些同时被5除余1,被7除余1的数,即1,36,71,106,141,176,211,246,……从以上数中寻找最小的被3除余2的数。36≡0(mod3),71≡2(mod3),符合条件的最小的数是71。(3)我们首先列举出被5除余2,被7除余2的数,2,37,72,107,142,177,212,247,……从以上数中寻找最小的被3除余1的数。2(mod3),37≡(
8、mod3)、因此符合条件的最小的数是37。(4)我们从被11除余1的数中寻找答案。1,12,23,34,45,56,67,78,89,100,133,
此文档下载收益归作者所有